Home > Computer Science > Artificial Intelligence > Volume-2 > Issue-4 > Topic Detection using Machine Learning

Topic Detection using Machine Learning

Call for Papers

Volume-9 | Exploring Multidisciplinary Research and Analysis of Advancements

Last date : 26-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Topic Detection using Machine Learning


Mr. Ajmal Rasi | Dr. Rajasimha A Makram | Ms. Shilpa Das

https://doi.org/10.31142/ijtsrd14272



Mr. Ajmal Rasi | Dr. Rajasimha A Makram | Ms. Shilpa Das "Topic Detection using Machine Learning" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-4, June 2018, pp.1433-1436, URL: https://www.ijtsrd.com/papers/ijtsrd14272.pdf

Various types of social media such as blogs, discussion forums and peer-to-peer networks present a wealth of information that can be very helpful. Given vast amount of data, one of the challenge has been to automatically identify the topic of the background chatter. Such emerging topics can be identified by the appearance of multiple posts on a unique subject matter, which is distinct from previous online discourse. We address the problem of identifying topics through the use of machine learning. I propose a topic detection method based on supervised machine learning model, where sentences are labelled, tokenized and the vectorised sentence is trained on densely connected neural network. Compared to conventional gradient descent optimization algorithm, Adam optimizer trains the data much faster and efficiently. Finally the model is tested on an Android App with live data from Google News.

Machine Learning, Supervised Learning, Neural Networks, Topic Detection, Natural Language Processing


IJTSRD14272
Volume-2 | Issue-4, June 2018
1433-1436
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin