Home > Computer Science > Real-time Computing > Volume-2 > Issue-4 > Data Imputation Methods and Technologies

Data Imputation Methods and Technologies

Call for Papers

Volume-9 | Exploring Multidisciplinary Research and Analysis of Advancements

Last date : 26-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Data Imputation Methods and Technologies


Ritesh Kumar Pandey | Dr Asha Ambhaikar

https://doi.org/10.31142/ijtsrd14113



Ritesh Kumar Pandey | Dr Asha Ambhaikar "Data Imputation Methods and Technologies" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-4, June 2018, pp.828-831, URL: https://www.ijtsrd.com/papers/ijtsrd14113.pdf

We introduce a class of linear quantile regression estimators for panel data. Our framework contains dynamic autoregressive models, models with general predetermined regressors, and models with multiple individual e?ects as special cases. We follow a correlated random-e?ects approach, and rely on additional layers of quantile regressions as a flexible tool to model conditional distributions. Conditions are given under which the model is nonparametrically identified in static or Markovian dynamic models. We develop a sequential method-of-moment approach for estimation, and compute the estimator using an iterative algorithm that exploits the computational simplicity of ordinary quantile regression in each iteration step. Finally, a Monte-Carlo exercise and an application to measure the e?ect of smoking during pregnancy on children’s birthweights complete the paper. K-means and K-medoids clustering algorithms are widely used for many practical applications. Original k-mean and k-medoids algorithms select initial centroids and medoids randomly that affect the quality of the resulting clusters and sometimes it generates unstable and empty clusters which are meaningless. The original k-means and k-mediods algorithm is computationally expensive and requires time proportional to the product of the number of data items, number of clusters and the number of iterations. The new approach for the k mean algorithm eliminates the deficiency of exiting k mean. It first calculates the initial centroids k as per requirements of users and then gives better, effective and stable cluster. It also takes less execution time because it eliminates unnecessary distance computation by using previous iteration. The new approach for k- medoids selects initial k medoids systematically based on initial centroids. It generates stable clusters to improve accuracy.

Panel data, quantile regression, expectation-Maximization


IJTSRD14113
Volume-2 | Issue-4, June 2018
828-831
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin