Home > Engineering > Computer Engineering > Volume-2 > Issue-3 > Automatic Image Captions for Lightly Labelled Images

Automatic Image Captions for Lightly Labelled Images

Call for Papers

Volume-8 | Issue-6

Last date : 27-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Automatic Image Captions for Lightly Labelled Images


Raju Janagam | K. Yakub Reddy

https://doi.org/10.31142/ijtsrd10786



Raju Janagam | K. Yakub Reddy "Automatic Image Captions for Lightly Labelled Images" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-3, April 2018, pp.452-454, URL: https://www.ijtsrd.com/papers/ijtsrd10786.pdf

We initiate a new distance metric learning technique recognized as ambiguously supervised structural metric learning to find out discriminative Mahalanobis distance metric that is based on weak supervision data. For improving the performance, two affinity matrices are combined to get a fused affinity matrix which is used for face naming. When specified a collection of images, in which each of the image contains numerous faces and is linked by few names in corresponding caption, the purpose of face naming is to infer acceptable name for each face. Here we introduce two methods to correspondingly get hold of two discriminative affinity matrices by means of learning from the images of weakly labelled. For initial affinity matrix obtaining, we put forward a new method known as regularized low-rank representation by incorporation of weakly supervised information into low-rank representation with the intention that affinity matrix is obtained from resulting reconstruction coefficient matrix.

Images, Regularized low-rank, Affinity matrices, Face naming, Mahalanobis distance metric


IJTSRD10786
Volume-2 | Issue-3, April 2018
452-454
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin