Home > Engineering > Computer Engineering > Volume-2 > Issue-1 > Discovering Anomalies Based on Saliency Detection and Segmentation in Surveillance System

Discovering Anomalies Based on Saliency Detection and Segmentation in Surveillance System

Call for Papers

Volume-9 | Exploring Multidisciplinary Research and Analysis of Advancements

Last date : 26-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Discovering Anomalies Based on Saliency Detection and Segmentation in Surveillance System


K. Shankar | Dr. S. Srinivasan | Dr. T. S. Sivakumaran | K. Madhavi Priya

https://doi.org/10.31142/ijtsrd5871



K. Shankar | Dr. S. Srinivasan | Dr. T. S. Sivakumaran | K. Madhavi Priya "Discovering Anomalies Based on Saliency Detection and Segmentation in Surveillance System" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-1, December 2017, pp.227-231, URL: https://www.ijtsrd.com/papers/ijtsrd5871.pdf

This paper proposes extracting salient objects from motion fields. Salient object detection is an important technique for many content-based applications, but it becomes a challenging work when handling the clustered saliency maps, which cannot completely highlight salient object regions and cannot suppress background regions. We present algorithms for recognizing activity in monocular video sequences, based on discriminative gradient Random Field. Surveillance videos capture the behavioral activities of the objects accessing the surveillance system. Some behavior is frequent sequence of events and some deviate from the known frequent sequences of events. These events are termed as anomalies and may be susceptible to criminal activities. In the past, work was based on discovering the known abnormal events. Here, the unknown abnormal activities are to be detected and alerted such that early actions are taken.

Gradient, Contrast, Anomalies, Background regions


IJTSRD5871
Volume-2 | Issue-1, December 2017
227-231
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin