Use of nonlinear loads has been increased in large extent in industries now-a-days which injects harmonic currents in supply system. These harmonics creates power quality issue. Shunt Active Power Filter (SAPF) is the popular and efficient solution to reduce these harmonics. SAPF can overcome voltage sag, eliminate harmonics and improves power factor. SAPF reduces total harmonic distortion (THD) to acceptable level. Reference current generation is the heart of APF. Reference current generation using instantaneous reactive power (IRP) theory is presented in this paper. IRP theory is widely used to control active power filters (APFs). Modeling of this technique is implemented in MATLAB/simulink.
Isolation; SAPF, Power quality, IRP Theory, THD, MATLAB/simulink
International Journal of Trend in Scientific Research and Development - IJTSRD having
online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International
Journal which provides rapid publication of your research articles and aims to promote
the theory and practice along with knowledge sharing between researchers, developers,
engineers, students, and practitioners working in and around the world in many areas
like Sciences, Technology, Innovation, Engineering, Agriculture, Management and
many more and it is recommended by all Universities, review articles and short communications
in all subjects. IJTSRD running an International Journal who are proving quality
publication of peer reviewed and refereed international journals from diverse fields
that emphasizes new research, development and their applications. IJTSRD provides
an online access to exchange your research work, technical notes & surveying results
among professionals throughout the world in e-journals. IJTSRD is a fastest growing
and dynamic professional organization. The aim of this organization is to provide
access not only to world class research resources, but through its professionals
aim to bring in a significant transformation in the real of open access journals
and online publishing.