Home > Engineering > Electrical Engineering > Volume-3 > Issue-1 > Design Fuzzy-PI Based Controller for Load Frequency Control of Thermal - Thermal Area Interconnected Power System

Design Fuzzy-PI Based Controller for Load Frequency Control of Thermal - Thermal Area Interconnected Power System

Call for Papers

Volume-8 | Issue-6

Last date : 27-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Design Fuzzy-PI Based Controller for Load Frequency Control of Thermal - Thermal Area Interconnected Power System


Ajay Kumar Maurya | Dr. G. K. Banerjee | Dr. Piush Kumar

https://doi.org/10.31142/ijtsrd19164



Ajay Kumar Maurya | Dr. G. K. Banerjee | Dr. Piush Kumar "Design Fuzzy-PI Based Controller for Load Frequency Control of Thermal - Thermal Area Interconnected Power System" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-1, December 2018, pp.928-934, URL: https://www.ijtsrd.com/papers/ijtsrd19164.pdf

This paper presents how to design proportional integral controller and Fuzzy-PI based controller for efficiently load frequency control. Loads on the electrical system always vary in relation to that time, which results in diversity of frequency, causing frequency control problems to be loaded. The frequency difference is highly undesirable and the maximum allowable difference in frequency is ± 0.5 Hz. This paper load frequency control is done by PI controller, which is a conventional controller. This type of controller is slow and the controller does not allow the designer to keep in mind the potential change in operating conditions and non-linearity in the generator unit. To overcome these flaws, new intelligent controllers like Fuzzy-PI Controller are presented to extinguish tie-line power due to deviation in frequency and various load disturbances. The effectiveness of the proposed controller has been confirmed using the MATLAB / SIMULINK software. The results show that the PI-fuzzy controller provides fast response, little undershoots and negligible overshoot with small state transfer time to reach the final stable position.

PI controller, Fuzzy controller, two area power system, load frequency control


IJTSRD19164
Volume-3 | Issue-1, December 2018
928-934
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin