Home > Engineering > Electronics & Communication Engineering > Volume-2 > Issue-4 > Clinical Depression Detection Using Speech Feature With Machine Learning Approach

Clinical Depression Detection Using Speech Feature With Machine Learning Approach

Call for Papers

Volume-9 | Exploring Multidisciplinary Research and Analysis of Advancements

Last date : 26-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Clinical Depression Detection Using Speech Feature With Machine Learning Approach


Ms. Anjum Shaikh | Ms. Firdos Shaikh | Mr. Suhaib Ramzan | Prof. M. M. Patil

https://doi.org/10.31142/ijtsrd14363



Ms. Anjum Shaikh | Ms. Firdos Shaikh | Mr. Suhaib Ramzan | Prof. M. M. Patil "Clinical Depression Detection Using Speech Feature With Machine Learning Approach" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-4, June 2018, pp.1437-1440, URL: https://www.ijtsrd.com/papers/ijtsrd14363.pdf

Depression is a general mental health disorder that presents state of low mood, negative thoughts, mental disturbance, typically with lack of energy , difficulty in maintaining concentration, guilty, irritable, restless and cognitive difficulties such as lose interest in different new things. Clinical depression is a major risk factor in suicides and is associated with high mortality rates, therefore making it one of the leading causes of death worldwide every year. The landmark World Health organisation(WHO) Global Burden of Disease (GBD) quantified depression as the second highest leading cause of disability world-wide[1]. It is observed that, there is increase in tendency of clinical depression in adolescents (i.e. age between 13–20 years) has been linked to a range of serious problem, basically an increase in the number of suicide attempts and deaths. This is making public health concern. In this project we are detecting whether the person is in depression or not using tensor flow software. There various biomarkers of depression like facial expressions, speech, pupil, T-body shape, MRI, EEG, etc. Here we are processing on speech feature extracted from database by SVM technique. Again among features of speech like TEO, MFCC, pitch, etc. Here we are extracting MFCC feature of speech from database.

Machine Learning, Supervised Learning, Neural Networks, Topic Detection, Natural Language Processing


IJTSRD14363
Volume-2 | Issue-4, June 2018
1437-1440
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin