Home > Engineering > Electronics & Communication Engineering > Volume-2 > Issue-5 > SVM Classifiers at it Bests in Brain Tumor Detection using MR Images

SVM Classifiers at it Bests in Brain Tumor Detection using MR Images

Call for Papers

Volume-9 | Exploring Multidisciplinary Research and Analysis of Advancements

Last date : 26-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


SVM Classifiers at it Bests in Brain Tumor Detection using MR Images


Dr. R Manjunatha Prasad | Roopa B S

https://doi.org/10.31142/ijtsrd18372



Dr. R Manjunatha Prasad | Roopa B S "SVM Classifiers at it Bests in Brain Tumor Detection using MR Images" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-5, August 2018, pp.2410-2415, URL: https://www.ijtsrd.com/papers/ijtsrd18372.pdf

This paper presents some case study frameworks to limelight SVM classifiers as most efficient one compared to existing classifiers like Otsu, k-means and fuzzy c-means. In general, Computed Tomography (CT) and Magnetic Resonance Imaging (MR) are more dominant imaging technique for any brain lesions detection like brain tumor, Alzheimer’s disease and so on. MR imaging takes a lead technically for imaging medical images due to its possession of large spatial resolution and provides better contrast for the soft tissues like white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The usual method used for classification of lesions in brain images consists of pre-processing, feature extraction, feature reduction and classification. Early detection of the tumor region without much time lapse in computation can be achieved by using efficient SVM classifier model. Brain tumor grade classifications with the assistance of morphologically selected features are extracted and tumor classification is attained using SVM classifier. The assessment of SVM classifications are evaluated through metrics termed as sensitivity, exactness and accuracy of segmentation. These measures are then compared with existing methods to exhibit the SVM classifier as significant classifier model.

Computed Tomography(CT),Magnetic Resonance(MR),white matter(WM),gray matter(GM) ,cerebrospinal fluid(CSF),Support vector machine(SVM).


IJTSRD18372
Volume-2 | Issue-5, August 2018
2410-2415
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin