Home > Engineering > Mechanical Engineering > Volume-2 > Issue-6 > Investigation on Mechanical Properties of AL6061 Alloy Processed by FSW

Investigation on Mechanical Properties of AL6061 Alloy Processed by FSW

Call for Papers

Volume-9 | Exploring Multidisciplinary Research and Analysis of Advancements

Last date : 26-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Investigation on Mechanical Properties of AL6061 Alloy Processed by FSW


B. S. Bharadwaj | N. Phani Raja Rao

https://doi.org/10.31142/ijtsrd18802



B. S. Bharadwaj | N. Phani Raja Rao "Investigation on Mechanical Properties of AL6061 Alloy Processed by FSW" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-6, October 2018, pp.1159-1161, URL: https://www.ijtsrd.com/papers/ijtsrd18802.pdf

The aim of this experiment was to improve the mechanical properties of 6061 aluminium alloys by friction stir processing (FSP), a solid-state technique for micro structural modification using the heat from a friction and stirring. The Aluminium alloy 6061 is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance. Welding is main fabrication method of 6061 alloy for manufacturing various engineering components. Friction stir welding (FSW) is a recently developed solid state welding process to overcome the problems encountered in fusion welding. This process uses a non-consumable tool to generate frictional heat on the abutting surfaces. The welding parameters, such as tool pin profile, rotational speed, welding speed and axial force, play major role in determining the micro structure and corrosion resistance of welded joint. In this work a central composite design with two different speeds, traverse speeds and Four tools has been used to minimize the experimental conditions.

Friction Stir Processing, Shoulder Diameter, Pin Profile, Rotational Speed and Traverse Speed.


IJTSRD18802
Volume-2 | Issue-6, October 2018
1159-1161
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin