Home > Engineering > Mechanical Engineering > Volume-2 > Issue-6 > Design and Development of Honeycomb Structure for Additive Manufacturing

Design and Development of Honeycomb Structure for Additive Manufacturing

Call for Papers

Volume-9 | Exploring Multidisciplinary Research and Analysis of Advancements

Last date : 26-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Design and Development of Honeycomb Structure for Additive Manufacturing


Narendra Kumar Rajak | Prof. Amit Kaimkuriya

https://doi.org/10.31142/ijtsrd18856



Narendra Kumar Rajak | Prof. Amit Kaimkuriya "Design and Development of Honeycomb Structure for Additive Manufacturing" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-6, October 2018, pp.1198-1203, URL: https://www.ijtsrd.com/papers/ijtsrd18856.pdf

the demand for shorter product development time has resulted in the introduction of a new paradigm called Additive Manufacturing (AM). Due to its significant advantages in terms of cost effective, lesser build time, elimination of expensive tooling, design flexibility AM is finding applications in many diverse fields of the industry today. One of the recent applications of this technology is for fabrication of cellular structures. Cellular structures are designed to have material where it is needed for specific applications. Compared to solid materials, these structures can provide high strength-to-weight ratio, good energy absorption characteristics and good thermal and acoustic insulation properties to aerospace, medical and engineering products. However, due to inclusion of too many design variables, the design process of these structures is a challenge task. Furthermore, polymer additive manufacturing techniques, such as fused deposition modeling (FDM) process which shows the great capability to fabricate these structures, are still facing certain process limitations in terms of support structure requirement for certain category of cellular structures. Therefore, in this research, a computer-aided design (CAD) based method is proposed to design and develop hexagonal honeycomb structure (self-supporting periodic cellular structure) for FDM process. This novel methodology is found to have potential to create honeycomb cellular structures with different volume fractions successfully without any part distortion. Once designing process is complete, mechanical and microstructure properties of these structures are characterized to investigate effect of volume fraction on compressive strength of the part. Volume fraction can be defined as the volume percentage of the solid material inside the cellular structure and it is varied in this thesis by changing the cell size and wall thickness of honeycombs. Compression strength of the honeycomb structure is observed to increase with the increase in the volume fraction and this behavior is compared with an existing Wierzbicki expression, developed for predicting compression properties. Some differences are noticed in between experimentally tested and Wierzbicki model estimated compressive strength. These differences may be attributed to layer by layer deposition strategy and the residual stress inherent to the FDM-manufacturing process.

Computer-aided design (CAD), Cellular structures, Resin Transfer Moulding (RTM), Design for Additive Manufacturing (DFAM)


IJTSRD18856
Volume-2 | Issue-6, October 2018
1198-1203
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin