Home > Engineering > Mechanical Engineering > Volume-2 > Issue-6 > Effect of Diesel Engine Fuelled with Biofuel Blends

Effect of Diesel Engine Fuelled with Biofuel Blends

Call for Papers

Volume-8 | Issue-6

Last date : 27-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Effect of Diesel Engine Fuelled with Biofuel Blends


Akash Paul | Amiya Bhaumik | Kushal Burman

https://doi.org/10.31142/ijtsrd18915



Akash Paul | Amiya Bhaumik | Kushal Burman "Effect of Diesel Engine Fuelled with Biofuel Blends" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-6, October 2018, pp.1568-1573, URL: https://www.ijtsrd.com/papers/ijtsrd18915.pdf

The present work was conducted on a 1-cylinder, 4S, DI CI engine, on which neat diesel, neem biodiesel and polanga biodiesel and ethanol fuel were tested by varying the load on the engine setup at various blend ratios such as: – diesel fuel 100% (D100), biodiesel neem 100% (N100), biodiesel polanga 50% blended with diesel 50% (P50), and ethanol 5% blended with diesel 95% (E5).The research carried was to compare the performance-emission characteristics of various blend samples w.r.t neat diesel fuel. The performance results show that, the BTE of N100, P50 fuel blends was less than E5 blend, as compared to neat diesel, whereas, the BSFC of D100, E5 blend had a decreasing nature than N100 and P50 blend. The CO emissions among the biofuel blends was maximum for N100 and then P50 blend but the least was for E5 blend w.r.t neat diesel. Also, the UHC emission for N100, P50 and E5 blends had a decreasing trend than neat diesel fuel. The D100 fuel had a maximum NOx emission in comparison to others and the least was by E5 blend. The CO2 emission of N100 and D100 was the highest than P50 and E5 blends during the operation. The unused O2for N100 fuel was the least than other fuel samples and the maximum was for E5 blend. The biofuel blends being used here had an effective outcome which can be utilised as an substitute for neat diesel.

Performance, emission, diesel engine, neem biodiesel, polanga biodiesel, ethanol


IJTSRD18915
Volume-2 | Issue-6, October 2018
1568-1573
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin