n this paper we compare different kernel had been developed for support vector machine based time series classification. Despite the better presentation of Support Vector Machine (SVM) on many concrete classification problems, the algorithm is not directly applicable to multi-dimensional routes having different measurements. Training support vector machines (SVM) with indefinite kernels has just fascinated consideration in the machine learning public. This is moderately due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite. In this paper, by spreading the Gaussian RBF kernel by Gaussian elastic metric kernel. Gaussian elastic metric kernel is extended version of Gaussian RBF. The extended version divided in two ways- time wrap distance and its real penalty. Experimental results on 17 datasets, time series data sets show that, in terms of classification accuracy, SVM with Gaussian elastic metric kernel is much superior to other kernels, and the ultramodern similarity measure methods. In this paper we used the indefinite resemblance function or distance directly without any conversion, and, hence, it always treats both training and test examples consistently. Finally, it achieves the highest accuracy of Gaussian elastic metric kernel among all methods that train SVM with kernels i.e. positive semi-definite (PSD) and Non-PSD, with a statistically significant evidence while also retaining sparsity of the support vector set.
SVM, PSD, time series; support vector machine; dynamic time warping; kernel method
International Journal of Trend in Scientific Research and Development - IJTSRD having
online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International
Journal which provides rapid publication of your research articles and aims to promote
the theory and practice along with knowledge sharing between researchers, developers,
engineers, students, and practitioners working in and around the world in many areas
like Sciences, Technology, Innovation, Engineering, Agriculture, Management and
many more and it is recommended by all Universities, review articles and short communications
in all subjects. IJTSRD running an International Journal who are proving quality
publication of peer reviewed and refereed international journals from diverse fields
that emphasizes new research, development and their applications. IJTSRD provides
an online access to exchange your research work, technical notes & surveying results
among professionals throughout the world in e-journals. IJTSRD is a fastest growing
and dynamic professional organization. The aim of this organization is to provide
access not only to world class research resources, but through its professionals
aim to bring in a significant transformation in the real of open access journals
and online publishing.