Home > Computer Science > Data Miining > Volume-4 > Issue-4 > Principle Component Analysis Based on Optimal Centroid Selection Model for SubSpace Clustering Model

Principle Component Analysis Based on Optimal Centroid Selection Model for SubSpace Clustering Model

Call for Papers

Volume-8 | Issue-6

Last date : 27-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Principle Component Analysis Based on Optimal Centroid Selection Model for SubSpace Clustering Model


G. Raj Kamal | A. Deepika | D. Pavithra | J. Mohammed Nadeem | V. Prasath Kumar



G. Raj Kamal | A. Deepika | D. Pavithra | J. Mohammed Nadeem | V. Prasath Kumar "Principle Component Analysis Based on Optimal Centroid Selection Model for SubSpace Clustering Model" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-4, June 2020, pp.379-382, URL: https://www.ijtsrd.com/papers/ijtsrd31374.pdf

Clustering a large sparse and large scale data is an open research in the data mining. To discover the significant information through clustering algorithm stands inadequate as most of the data finds to be non actionable. Existing clustering technique is not feasible to time varying data in high dimensional space. Hence Subspace clustering will be answerable to problems in the clustering through incorporation of domain knowledge and parameter sensitive prediction. Sensitiveness of the data is also predicted through thresholding mechanism. The problems of usability and usefulness in 3D subspace clustering are very important issue in subspace clustering. . The Solutions is highly helpful benefit for police departments and law enforcement organisations to better understand stock issues and provide insights that will enable them to track activities, predict the likelihood. Also determining the correct dimension is inconsistent and challenging issue in subspace clustering .In this thesis, we propose Centroid based Subspace Forecasting Framework by constraints is proposed, i.e. must link and must not link with domain knowledge. Unsupervised Subspace clustering algorithm with inbuilt process like inconsistent constraints correlating to dimensions has been resolved through singular value decomposition. Principle component analysis is been used in which condition has been explored to estimate the strength of actionable to be particular attributes and utilizing the domain knowledge to refinement and validating the optimal centroids dynamically. An experimental result proves that proposed framework outperforms other competition subspace clustering technique in terms of efficiency, Fmeasure, parameter insensitiveness and accuracy.

Clustering, Unsupervised Learning, Subspace, Principle Component Analysis, Singular value Decomposition


IJTSRD31374
Volume-4 | Issue-4, June 2020
379-382
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin