Sentimental analysis or opinion mining is the process of obtaining sentiments about a given textual data using various methods of deep learning algorithms. The analysis is used to determine the polarity of the data as either positive or negative. This classifications can help automate data representation in various sectors which has a public feedback structure. In this paper, we are going to perform sentiment analysis on the infamous IMDB database which consists of 50000 movie reviews, in which we perform training on 25000 instances and test it on 25000 to determine the performance of the model. The model uses a variant of RNN algorithm which is LSTM (Long Short Term Memory) which will help us a make a model which will decide the polarity between 0 and 1. This approach has an accuracy of 88.04%
LSTM, Recurrent Neural Networks, Sentiment Analysis, Opinion Mining
International Journal of Trend in Scientific Research and Development - IJTSRD having
online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International
Journal which provides rapid publication of your research articles and aims to promote
the theory and practice along with knowledge sharing between researchers, developers,
engineers, students, and practitioners working in and around the world in many areas
like Sciences, Technology, Innovation, Engineering, Agriculture, Management and
many more and it is recommended by all Universities, review articles and short communications
in all subjects. IJTSRD running an International Journal who are proving quality
publication of peer reviewed and refereed international journals from diverse fields
that emphasizes new research, development and their applications. IJTSRD provides
an online access to exchange your research work, technical notes & surveying results
among professionals throughout the world in e-journals. IJTSRD is a fastest growing
and dynamic professional organization. The aim of this organization is to provide
access not only to world class research resources, but through its professionals
aim to bring in a significant transformation in the real of open access journals
and online publishing.