As everyone knows that Sentimental analysis plays an important role in these days because many start-ups have started with user-driven content [1]. Only finding the voice is not be the real time scenario so finding the Sentiment analysis of agent and customer separately is an important research area in natural language processing. Natural language processing has a wide range of applications like voice recognition, machine translation, product review, aspect-oriented product analysis, sentiment analysis and text classification etc [2]. This process will improve the business by analyze the emotions of the conversation with respect to the customer voice separately and also agent voice separately. In this project author going to perform speaker identification and analyze the sentiment of the customer and agent separately using Amazon Comprehend. Amazon Comprehend is a natural language processing (NLP) service that uses machine learning to extract the content of the voice. By using the speaker identification author can extract the unstructured data like images, voice etc separately so it is easy to analyze the business performance. Thus, will identify the emotions of the conversation and give the output whether the customer conversation is Positive, Negative, Neutral, or Mixed. To perform this author going to use some services from Aws due to some advantages like scaling the resources is easy compare to the normal process like doing physically such as support vector machine (SVM). AWS services like s3 is a object data store, Transcribe which generate the audio to text in raw format, Aws Glue is a ETL Service which will extract transform and load the data from the S3, Aws Comprehend is a NLP service used for finding sentiment of audio, Lambda is a server less where author can write a code, Aws Athena is a analyzing tools which will make complex queries in less time and last there is quick sight is a business intelligent tool where author can visualize the data of customers and also agents.
Sentimental analysis, NLP, Speaker identification, S3, Transcribe, Aws Glue, Aws Comprehend, Lambda, Athena, Quick sight, ETL
International Journal of Trend in Scientific Research and Development - IJTSRD having
online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International
Journal which provides rapid publication of your research articles and aims to promote
the theory and practice along with knowledge sharing between researchers, developers,
engineers, students, and practitioners working in and around the world in many areas
like Sciences, Technology, Innovation, Engineering, Agriculture, Management and
many more and it is recommended by all Universities, review articles and short communications
in all subjects. IJTSRD running an International Journal who are proving quality
publication of peer reviewed and refereed international journals from diverse fields
that emphasizes new research, development and their applications. IJTSRD provides
an online access to exchange your research work, technical notes & surveying results
among professionals throughout the world in e-journals. IJTSRD is a fastest growing
and dynamic professional organization. The aim of this organization is to provide
access not only to world class research resources, but through its professionals
aim to bring in a significant transformation in the real of open access journals
and online publishing.