Over the years, there have been a gradual increase in the electricity generation capacity of Nigeria, with more gas power plants installed between 1999-2003 to augment power supply from the existing hydro and thermal power plants installed in the 1970s but despite gradual increase in Mega Watts (MW) of electric power generated, Nigerian electricity consumers continue to experience epileptic and unreliable power supply distribution. As at today, the power distribution companies referred to as the DISCOs supply epileptic or skeletal power to their customers which they termed ‘load shading’. This term explains a situation whereby a power consumer or customer can obtain a power ration for some hours in the day and do not have power remaining hours in the day. Because of this, many consumers depend on generating sets as alternative source of power. This is inefficient and costly to maintain. Today it is possible to introduce the electric power inverter which converts battery DC voltage to AC voltage. Inside the inverter can be coupled an electric charging system which can charge the battery when there is power supply from utility power source. When this power source fails, the battery in turn supplies the inverter with DC which is being converted to A.C sometimes; the inverter can also be connected to renewable energy source like solar, wind etc. These sources ensures an all round supply of DC for the inverter. Renewable energy can be particularly suitable for developing countries such as Nigeria where public power supply is totally unreliable. In response to the yearning of the majority of Nigerians for a steady power supply, this research paper tries to contribute in a little way by designing and constructing a 0.75KVA inverter to power homes and offices. The paper starts by defining what an inverter is, reviewed similar past works in literature, and it explained the principles of operation and components used with its circuit diagram. The completed work was tested and met its design specifications.
VSI, inverter, transformer, resistor, power consumers, load shading, oscillator, current, voltage, source, synchronous, solar, piezoelectric, AC, DC, battery, MOSFET, SCR, VSI, CSI, terminal, GENCO, DISCO, TCN
International Journal of Trend in Scientific Research and Development - IJTSRD having
online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International
Journal which provides rapid publication of your research articles and aims to promote
the theory and practice along with knowledge sharing between researchers, developers,
engineers, students, and practitioners working in and around the world in many areas
like Sciences, Technology, Innovation, Engineering, Agriculture, Management and
many more and it is recommended by all Universities, review articles and short communications
in all subjects. IJTSRD running an International Journal who are proving quality
publication of peer reviewed and refereed international journals from diverse fields
that emphasizes new research, development and their applications. IJTSRD provides
an online access to exchange your research work, technical notes & surveying results
among professionals throughout the world in e-journals. IJTSRD is a fastest growing
and dynamic professional organization. The aim of this organization is to provide
access not only to world class research resources, but through its professionals
aim to bring in a significant transformation in the real of open access journals
and online publishing.