Home > Engineering > Electronics & Communication Engineering > Volume-2 > Issue-3 > A Review of design of Binary Golay Code and Extended Binary Golay Code for error correction

A Review of design of Binary Golay Code and Extended Binary Golay Code for error correction

Call for Papers

Volume-8 | Issue-6

Last date : 27-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


A Review of design of Binary Golay Code and Extended Binary Golay Code for error correction


Mayanka Rai | Hema Singh

https://doi.org/10.31142/ijtsrd11426



Mayanka Rai | Hema Singh "A Review of design of Binary Golay Code and Extended Binary Golay Code for error correction" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-3, April 2018, pp.1670-1674, URL: https://www.ijtsrd.com/papers/ijtsrd11426.pdf

A binary Golay code is a type of linear error-correcting code used in digital communications. The two binary Golay codes formats are the Binary Golay Code (23-bit, G23) and Extended Binary Golay code (24-bit, G24). The Golay code encodes 12-bits of data in such a way that it can correct 3-bits of error and detect 7-bits of error. G24 code is also called the Perfect Binary Golay Code. In standard code notation the codes have parameters [24, 12, 8] and [23, 12, 7], corresponding to the length of the codeword, the dimension of the code, and the minimum hamming distance between two codeword. An efficient implementation in the area of FPGA by using both Golay code (G23) and extended Golay code G(24) can be done by the help of different approaches of the encoding algorithm realizations. High speed with low-latency and less complexity in the design is the major concern at the time of working on FPGA. This paper presents a review on the various works performed by scholars on the design and implementation of Golay Code (G23 and G24).

FPGA, Operational Delay, Golay Code, CRC, Encoding, Decoding, hardware optimization


IJTSRD11426
Volume-2 | Issue-3, April 2018
1670-1674
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin