Recently the use of soil classification has gained more and more importance and recent direction in research works indicates that image classification of images for soil information is the preferred choice. Various methods for image classification have been developed based on different theories or models. In this study, three of these methods Maximum Likelihood classification (MLC), Sub pixel classification (SP) and Support Vector machine (SVM) are used to classify a soil image into seven soil classes and the results compared. MLC and SVM are hard classification methods but SP is a soft classification. Hardening of soft classifications for accuracy determination leads to loss of information and the accuracy may not necessary represent the strength of class membership. Therefore, in the comparison of the methods, the top 20% compositions per soil class of the SP were used instead. Results from the classification, indicated that output from SP was generally poor although it performs well with soils such as forest that are homogeneous in character. Of the two hard classifiers, SVM gave a better output than MLC.
Soil Classification, Image Processing, Support Vector Machine, SVM
International Journal of Trend in Scientific Research and Development - IJTSRD having
online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International
Journal which provides rapid publication of your research articles and aims to promote
the theory and practice along with knowledge sharing between researchers, developers,
engineers, students, and practitioners working in and around the world in many areas
like Sciences, Technology, Innovation, Engineering, Agriculture, Management and
many more and it is recommended by all Universities, review articles and short communications
in all subjects. IJTSRD running an International Journal who are proving quality
publication of peer reviewed and refereed international journals from diverse fields
that emphasizes new research, development and their applications. IJTSRD provides
an online access to exchange your research work, technical notes & surveying results
among professionals throughout the world in e-journals. IJTSRD is a fastest growing
and dynamic professional organization. The aim of this organization is to provide
access not only to world class research resources, but through its professionals
aim to bring in a significant transformation in the real of open access journals
and online publishing.