Home > Engineering > Information Technology > Volume-2 > Issue-1 > A review on Machine Learning Techniques for Neurological disorders estimation by Analyzing EEG Waves

A review on Machine Learning Techniques for Neurological disorders estimation by Analyzing EEG Waves

Call for Papers

Volume-9 | Issue-1

Last date : 24-Feb-2025

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


A review on Machine Learning Techniques for Neurological disorders estimation by Analyzing EEG Waves


Vijaykumar Janga | Prof. E Sreenivasa Reddy

https://doi.org/10.31142/ijtsrd7082



Vijaykumar Janga | Prof. E Sreenivasa Reddy "A review on Machine Learning Techniques for Neurological disorders estimation by Analyzing EEG Waves" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-1, December 2017, pp.824-831, URL: https://www.ijtsrd.com/papers/ijtsrd7082.pdf

With the fast improvement of neuroimaging data acquisition strategies, there has been a significant growth in learning neurological disorders among data mining and machine learning communities. Neurological disorders are the ones that impact the central nervous system (including the human brain) and also include over 600 disorders ranging from brain aneurysm to epilepsy. Every year, based on World Health Organization (WHO), neurological disorders affect much more than one billion people worldwide and count for up to seven million deaths. Hence, useful investigation of neurological disorders is actually of great value. The vast majority of datasets useful for diagnosis of neurological disorders like electroencephalogram (EEG) are actually complicated and poses challenges that are many for data mining and machine learning algorithms due to their increased dimensionality, non stationarity, and non linearity. Hence, an better feature representation is actually key to an effective suite of data mining and machine learning algorithms in the examination of neurological disorders. With this exploration, we use a well defined EEG dataset to train as well as test out models. A preprocessing stage is actually used to extend, arrange and manipulate the framework of free data sets to the needs of ours for better training and tests results. Several techniques are used by us to enhance system accuracy. This particular paper concentrates on dealing with above pointed out difficulties and appropriately analyzes different EEG signals that would in turn help us to boost the procedure of feature extraction and enhance the accuracy in classification. Along with acknowledging above issues, this particular paper proposes a framework that would be useful in determining man stress level and also as a result, differentiate a stressed or normal person/subject.

Electroencephalogram (EEG) , Emotion recognition, Stress, Machine learning techniques


IJTSRD7082
Volume-2 | Issue-1, December 2017
824-831
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin