Home > Engineering > Mechanical Engineering > Volume-3 > Issue-5 > Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exchanger (SSHE)

Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exchanger (SSHE)

Call for Papers

Volume-9 | Issue-1

Last date : 24-Feb-2025

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exchanger (SSHE)


Rajesh S C | Gautham Krishnan | Sreehari P | Akhil Naryanan K | Sibin S Nair



Rajesh S C | Gautham Krishnan | Sreehari P | Akhil Naryanan K | Sibin S Nair "Computational Analysis of Thermal Behavior within a Scraped Surface Heat Exchanger (SSHE)" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5, August 2019, pp.204-212, URL: https://www.ijtsrd.com/papers/ijtsrd25241.pdf

In this present work, the Computational analysis of fluid flow and heat transfer within a Scraped Surface Heat Exchanger (SSHE), which is an industrial device, is reported. The 3D model of SSHE geometry is achieved with Solid Edge V18. 3D mesh model of SSHE with finite volume discretization obtained in ANSYS ICM CFD code and ANSYS CFX V15 used to solve continuity, momentum and energy equations using multiple rotating reference frame formulation. The steady, laminar, non-isothermal flow of pure glycerin Newtonian fluid was investigated. The cooling process without phase change within the SSHE was studied. The different scraper blades of 3 and 2.The inlet velocity of the fluid is varied to evaluate the thermal behavior of SSHE. The different process parameters in the parametric study are rotational velocity, axial velocity and the different scraper blades (3 and 2). When reducing the number of rotating parts, better cooling is achieved. The variations of the local heat transfer coefficient based on inner wall temperature and bulk fluid temperature as a function of the main process parameters, namely rotational velocity, axial velocity and the different scraper blades obtained. The results have shown that viscous dissipation has a significant effect on the cooling of the glycerine. The local heat transfer coefficient increases gradually when reducing the rotating parts of scraper blades improves the heat transfer rate. Larger increases of the same occurred with higher rotational velocity and axial velocity. If higher the value of rotating velocity=9rps is considered there is a viscous heating occurs and also more number of rotating parts friction is produced on the boundary layer surface and the temperature increases, so 2 scraper blades results shows the better heat transfer performance in bulk fluid temperature and local heat transfer co-efficient. This is expected to be useful in the design of SSHEs handling highly viscous fluids.

Scraped Surface Heat Exchangers, Newtonian Fluid, Heat transfer co-efficient, bulk fluid temperature


IJTSRD25241
Volume-3 | Issue-5, August 2019
204-212
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin