Additive manufacturing, often referred to as 3D printing, has the potential to vastly accelerate innovation, compress supply chains, minimize materials and energy usage, and reduce waste. Originally developed at the Massachusetts Institute of Technology in 1993, 3D printing technology forms the basis of Z Corporation’s prototyping process. 3DP technology creates 3D physical prototypes by solidifying layers of deposited powder using a liquid binder. By definition 3DP is an extremely versatile and rapid process accommodating geometry of varying complexity in hundreds of different applications, and supporting many types of materials. Z Corp. pioneered the commercial use of 3DP technology, developing 3D printers that leading manufacturers use to produce early concept models and product prototypes. Utilizing 3DP technology, Z Corp. has developed 3D printers that operate at unprecedented speeds, extremely low costs, and within a broad range of applications. This paper describes the core technology and its related applications. Additive manufacturing, often referred to as 3D printing, is a new way of making products and components from a digital model. Like an office printer that puts 2D digital files on a piece of paper, a 3D printer creates components by depositing thin layers of material one after another, only where required, using a digital blueprint until the exact component has been created. Interest in additive techniques is growing swiftly as applications have progressed from rapid prototyping to the production of end-use products. Additive equipment can now use metals, polymers, composites, or other powders to “print” a range of functional components, layer by layer, including complex structures that cannot be manufactured by other means. By eliminating production steps and using substantially less material, ‘additive’ processes could be able to reduce waste and save more than 50% of energy compared to today’s ‘subtractive’ manufacturing processes, and reduce material costs by up to 90%. The use of additive manufacturing can potentially benefit a wide range of industries including defence, aerospace, automotive, biomedical, consumer products, and metals manufacturing. In this project, parametric model is done in Catia V5R20 and 3D- printing is done in Cura software.
Additive Manufacturing, Prototypes, 3D-Printing, Deposition, Binder, Rapid Prototyping, Subtractive manufacturing
International Journal of Trend in Scientific Research and Development - IJTSRD having
online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International
Journal which provides rapid publication of your research articles and aims to promote
the theory and practice along with knowledge sharing between researchers, developers,
engineers, students, and practitioners working in and around the world in many areas
like Sciences, Technology, Innovation, Engineering, Agriculture, Management and
many more and it is recommended by all Universities, review articles and short communications
in all subjects. IJTSRD running an International Journal who are proving quality
publication of peer reviewed and refereed international journals from diverse fields
that emphasizes new research, development and their applications. IJTSRD provides
an online access to exchange your research work, technical notes & surveying results
among professionals throughout the world in e-journals. IJTSRD is a fastest growing
and dynamic professional organization. The aim of this organization is to provide
access not only to world class research resources, but through its professionals
aim to bring in a significant transformation in the real of open access journals
and online publishing.