Home > Engineering > Mechanical Engineering > Volume-1 > Issue-4 > Experimental Research Work to Optimize Process Parameters into Electro Chemical Abrasive Flow Machining using Taguchi Methodology

Experimental Research Work to Optimize Process Parameters into Electro Chemical Abrasive Flow Machining using Taguchi Methodology

Call for Papers

Volume-9 | Exploring Multidisciplinary Research and Analysis of Advancements

Last date : 26-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Experimental Research Work to Optimize Process Parameters into Electro Chemical Abrasive Flow Machining using Taguchi Methodology


Sandeep Singh | Sunil kumar

https://doi.org/10.31142/ijtsrd80



Sandeep Singh | Sunil kumar "Experimental Research Work to Optimize Process Parameters into Electro Chemical Abrasive Flow Machining using Taguchi Methodology" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-1 | Issue-4, June 2017, URL: https://www.ijtsrd.com/papers/ijtsrd80.pdf

Electrochemical assisted abrasive flow finishing is a newly developed hybrid finishing process which is used to finish the internal parts of work piece having complicated geometry to large extent. In electrochemical assisted abrasive flow machining higher abrasion of the material was detected due to the combine effect of ECM and AFF processes. In Electrochemical aided abrasive flow machining a electrolyte is added to the prepared media .This media consist a kind of polymeric carrier and abrasive particles that are hydrocarbon gel, Al2O3, Silicon based polymer, and NaI (Sodium iodide) as electrolytic salt. In this experimental research different process parameters such as voltage, abrasive concentration, Number of cycle, molal concentration and diameter of rod were considered at different levels for response characteristic of surface roughness (Ra) and material removal (MR) based on Taguchi method using standard L27 orthogonal array (OA) for the plan of experimentation. To determine the contribution of each parameter analysis of variance was used.

Electrochemical machining (ECM,), Abrasive flow finishing (AFF), Taguchi Technique L27, ANOVA


IJTSRD80
Volume-1 | Issue-4, June 2017
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin