Home > Engineering > Other > Volume-3 > Issue-2 > Optimized Intrusion Detection System using Deep Learning Algorithm

Optimized Intrusion Detection System using Deep Learning Algorithm

Call for Papers

Volume-9 | Exploring Multidisciplinary Research and Analysis of Advancements

Last date : 26-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Optimized Intrusion Detection System using Deep Learning Algorithm


Prof P. Damodharan | K. Veena | Dr N. Suguna

https://doi.org/10.31142/ijtsrd21447



Prof P. Damodharan | K. Veena | Dr N. Suguna "Optimized Intrusion Detection System using Deep Learning Algorithm" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-2, February 2019, pp.528-534, URL: https://www.ijtsrd.com/papers/ijtsrd21447.pdf

A method and a system for the detection of an intrusion in a computer network compare the network traffic of the computer network at multiple different points in the network. In an uncompromised network the network traffic monitored at these two different points in the network should be identical. A network intrusion detection system is mostly place at strategic points in a network, so that it can monitor the traffic traveling to or from different devices on that network. The existing Software Defined Network (SDN) proposes the separation of forward and control planes by introducing a new independent plane called network controller. Machine learning is an artificial intelligence approach that focuses on acquiring knowledge from raw data and, based at least in part on the identified flow, selectively causing the packet, or a packet descriptor associated with the packet. The performance is evaluated using the network analysis metrics such as key generation delay, key sharing delay and the hash code generation time for both SDN and the proposed machine learning SDN.

-


IJTSRD21447
Volume-3 | Issue-2, February 2019
528-534
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin