International Journal of Trend in Scientific Research and Development(IJTSRD Volume 4 Issue 4 June 2020 Available Online www.ijtsrd.com e-ISSN 2456 - 6470

Basic Maximal Total Strong Dominating Functions

Dr. M. Kavitha^{1,*},

¹Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore - 641407, India.

Let G = (V, E) be a simple graph. A subset D of V(G) is called a total strong dominating set of G, if for every $u \in V(G)$, there exists a $v \in D$ such that u and v are adjacent and $deg(v) \ge deg(u)$. The minimum cardinality of a total strong dominating set of G is called total strong domination number of G and is denoted by $\gamma_t^s(G)$. Corresponding to total strong dominating set of G, total strong dominating function can be defined. The minimum weight of a total strong dominating function is called the fractional total strong domination number of G and is denoted by $\gamma_{sf}^t(G)$. A study of total strong dominating functions is carried out in this paper.

Keywords: Total Strong Dominating Function, Maximal Total Strong Dominating Function, Basic Maximal Total Strong Dominating Function

Introduction: Corresponding to total strong dominating sets in a graph, total strong dominating functions may be defined. The minimality of a total strong dominating function can be characterised. Convex combination of minimal total strong dominating function is defined and studied. A total strong dominating function is basic, if it cannot be expressed as a covex combination of minimal total strong dominating functions. Basic total strong dominating functions are characterised.

Definition 0.1:

Let G = (V, E) be a simple graph without strong isolates. A function

 $f: V(G) \to [0,1]$ is called a Total Strong Dominating Function (TSDF), if $f(N_s(u)) = \sum_{v \in N_s(u)} f(v) \ge 1, \forall u \in V(G)$

V(G), where

 $N_s(u) = \{x \in N(u) : deg (x) \ge deg (u)\}.$ Definition 0.2:

A TSDF is called a Minimal Total Strong Dominating Function (MTSDF), if whenever $g: V(G) \rightarrow [0,1]$ and g < f, g is not a TSDF.

Definition 0.3: Let G be a graph without isolated vertex. A TSDF (MTSDF) is called a **basic TSDF** (basic MTSDF) denoted by BTSDF (BMTSDF) if it cannot be expressed as a proper convex combination of two distinct $TSDF^{s}$ (MTSDF^s).

Remark 0.4: A BTSDF need not be a BMTSDF.

Lemma 0.5: Let f and g be two distinct MTSDF^s of a graph G with $B_f^s = B_g^s$ and $P_f = P_g$. Let $\delta(v) = f(v) - g(v)$, for every $v \in V$. Then

(i) If
$$f(v) = 0$$
 or $f(v) = 1$, then $\delta(v) = 0$.
(ii) $\sum_{u \in N_s(v)} \delta(v) = 0, \forall v \in B_f^s$.
(iii) $\sum_{u \in N_s(v)} \delta(v) = 0, \forall v \in B_g^s$.

Proof:

(i) We have, f(v) = 1 if and only if g(v) = 1 and

$$f(v) = 0$$
 if and only if $g(v) = 0$.

Therefore, (i) follows.

(ii) Let
$$v \in B_f^s$$
.
Then $v \in B_g^s$.

$$\sum_{v \in N_s(v)} \delta(v) = \sum_{u \in N_s(v)} (f(u) - g(u))$$

$$= \sum_{u \in N_s(v)} f(u) - \sum_{u \in N_s(v)} g(u)$$

$$= 1 - 1 \text{ (since } v \in B_f^s \text{ and } v \in B_g^s)$$

$$= 0.$$

Therefore, (ii) follows.

(iii) is similar to (ii).

Lemma 0.6: Let f and g be convex linear combination of $MTSDF^s g_1, g_2,...,g_n$ such that f is minimal. Then $B_f^s = B_g^s = \bigcap_{i=1}^n B_{g_i}^s, P_f = P_g = \bigcup_{i=1}^n P_{g_i}$ and g is minimal.

Proof:

Let $v \in P_f$. Then f(v) > 0. Let $f = \sum_{i=1}^{n} \lambda_i g_i$, $0 < \lambda_i < 1$, $\sum_{i=1}^{n} \lambda_i = 1$. Suppose $g_i(v) = 0$, $\forall i$. Then f(v) = 0, a contradiction. Therefore, $g_i(v) > 0$, for at least one i. Therefore, $v \in \bigcup_{i=1}^{n} P_{g_i}$. Therefore, $P_f \subseteq \bigcup_{i=1}^{n} P_{g_i}$. Suppose $v \in \bigcup_{i=1}^{n} P_{g_i}$. Then $g(v_i) > 0$, for some i. Therefore, f(v) > 0. Therefore, $v \in P_f$. Therefore, $\bigcup_{i=1}^{n} P_{g_i} \subseteq P_f$. Therefore, $P_f = \bigcup_{i=1}^{n} P_{g_i}$. Similarly, $P_g = \bigcup_{i=1}^{n} P_{g_i}$. Therefore, $P_f = P_g = \bigcup_{i=1}^{n} P_{g_i}$. Let $v \in B_f^s$. Then $f(N_s(v)) = 1$. Therefore, $\sum_{i=1}^{n} \lambda_i g_i(N_s(v)) = 1$. Suppose $v \notin B_{g_i}^s$, for some i, $1 \le i \le n$. Then $g_i(N_s(v)) > 1$. Since $g_i(N_s(v)) \ge 1$, for all j, $1 \le j \le n$,
$$\begin{split} \sum_{i=1}^{n} \lambda_i g_i(N_s(v)) &> \sum_{i=1}^{n} \lambda_i. \\ &= 1, \text{ a contradiction.} \end{split}$$
Therefore, $v \in B_{g_i}^s$, $\forall i$. Therefore, $v \in \bigcap_{i=1}^{n} B_{g_i}^s$.
Therefore, $B_f^s \subseteq \bigcap_{i=1}^{n} B_{g_i}^s$.
Let $v \in \bigcap_{i=1}^{n} B_{g_i}^s$. Then $g_i(N_s(v)) = 1$, for all $i, 1 \leq i \leq n$.
Therefore, $\sum_{i=1}^{n} \lambda_i g_i(N_s(v)) = \sum_{i=1}^{n} \lambda_i = 1$.
Therefore, $\int_{i=1}^{n} B_{g_i}^s \subseteq B_f^s$. Therefore, $v \in B_f^s$.
Therefore, $\bigcap_{i=1}^{n} B_{g_i}^s \subseteq B_f^s$. Therefore, $B_f^s = \bigcap_{i=1}^{n} B_{g_i}^s$.
Similarly, $B_g^s = \bigcap_{i=1}^{n} B_{g_i}^s$. Hence $B_f^s = B_g^s = \bigcap_{i=1}^{n} B_{g_i}^s$.
Since f is minimal, B_f^s weakly dominates $\bigcap_{i=1}^{n} P_{g_i}$.
That is, $\bigcap_{i=g_i}^{n} B_{g_i}^s$ weakly dominates P_g .
Hence g is a MTSDF.

Theorem 0.7: Let f be a MTSDF. Then f is a BMTSDF if and only if there does not exist an MTSDF g such that $B_f^s = B_g^s$ and $P_f = P_g$. **Proof:**

Suppose f is a BMTSDF.

Suppose there exists a MTSDF g such that $B_f^s = B_g^s$ and $P_f = P_g$. Let $S = \{a \in \Re : h_a = (1 + a)g - af\}$ be a TSDF and $B_{h_a}^s = B_f^s$ and $P_{h_a} = P_f$. Then S is a bounded open interval. Let $S = (k_1, k_2)$. Then $k_1 < -1 < 0 < k_2$. Also h_{k_1} and h_{k_2} are MTSDF^s. $h_{k_1} = (1 + k_1)g - k_1f$. Therefore, $f = \frac{(1 + k_1)g}{k_1} - \frac{hk_1}{k_1}$. Let $\lambda_1 = \frac{1 + k_1}{k_1}$ and $\lambda_2 = \frac{-1}{k_1}$. Therefore, λ_1 and λ_2 are positive and $\lambda_1 + \lambda_2 = 1$. Therefore, f is a convex combination of g and h_{k_1} . Therefore, f is not a BMTSDF, a contradiction. Therefore, there does not exist a MTSDF g such that $B_f^s = B_g^s$ and $P_f = P_g$. Conversely, suppose f is not a BMTSDF. Then there exists MTSDF^s $g_1, g_2, ..., g_n$ such that $f = \sum_{i=1}^n \lambda_i g_i$, where $0 < \lambda_i < 1$ and $\sum_{i=1}^n \lambda_i = 1$.

Let
$$g = \sum_{i=1}^{n} \mu_i g_i$$
, $0 < \mu_i < 1$ and $\sum_{i=1}^{n} \mu_i = 1$

Then by lemma 0.6, $B_f^s = B_g^s = \bigcap_{i=1}^n B_{g_i}^s$ and $P_f = P_g = \bigcup_{i=1}^n P_{g_i}$ and since f is a MTSDF, g is a MTSDF. Thus there exists a MTSDF g such that $B_f^s = B_g^s$ and $P_f^{i=1} = P_g$. Hence the theorem.

Theorem 0.8: Let f be a MTSDF of a graph G = (V, E) with $B_f^s = \{v_1, v_2, ..., v_m\}$ and $P'_f = \{u \in V : 0 < f(u) < 1\} = \{u_1, u_2, ..., u_n\}.$

Let $A = [a_{ij}]$ be a $m \times n$ matrix defined by $a_{ij} = \begin{cases} 1, & \text{if } v_i \text{ weakly dominates } u_j \\ 0, & \text{otherwise.} \end{cases}$

Consider the system of linear equations given by $\sum_{j=1}^{n} a_{ij}x_j = 0, 1 \le i \le m$. Then f is a BMTSDE if and only if the abave surjection of the system of the syst

Then f is a BMTSDF if and only if the above system does not have a non-trivial solution. **Proof:**

Suppose f is not a BMTSDF.

Then there exists a MTSDF g such that $B_f^s = B_g^s$ and $P_f = P_g$.

Let $x_j = f(u_j) - g(u_j), 1 \le j \le n$. Suppose $x_j = 0, \forall j, 1 \le j \le n$. If f(v) = 0, then $v \notin P_f = P_g$. Therefore, g(v) = 0. Therefore, $f(v) - g(v) = 0, \forall v \notin P_f$. That is, $f(v) = g(v), \forall v \notin P_f$. If f(v) = 1, then by Theorem **??**, g(v) = 1 and hence f(v) - g(v) = 0. Therefore, f = g, a contradiction. Therefore, there exists, some $j, 1 \le j \le n$ such that $x_j \ne 0$.

Let
$$f(u_{j_1}) - g(u_{j_1}) \neq 0$$
.

$$\sum_{j=1}^{n} a_{ij}x_j = \sum_{j=1}^{n} a_{ij}(f(u_j) - g(u_j))$$

$$= \sum_{u \in N_s(v_i)} (f(u) - g(u))$$

(since $a_{ij} = 1$ because v_i weakly dominates u)

= 0, by lemma 0.5.

Since $x_i \neq 0$, the left hand side has a non-trivial solution.

Conversely, let $\{x_1, x_2, ..., x_n\}$ be a non-trivial solution for the system of linear equations.

Define $g: V(G) \rightarrow [0,1]$ as follows: $g(v) = \begin{cases} f(v), & \text{if } v \notin P'_f \\ f(v) + \frac{x_j}{M}, & \text{if } v = u_j, \ 1 \leq j \leq n, \ where \ M \ is \ to \ be \ suitably \ chosen. \end{cases}$ Since $\{x_1, x_2, ..., x_n\}$ is a non-trivial solution, $g \neq f$. Since $0 < f(u_j) < 1$, choose $M_j > 0$ such that $0 < (f(u_j) + \frac{x_j}{M_j}) < 1$, for each j, $1 \leq j \leq n$. Let $M' = max\{M_1, M_2, ..., M_n\}$. Choose M to be equal to M'.

For any
$$v \in V$$
, $g(N_s(v)) = \sum_{u \in N_s(v)} g(u)$

$$= \sum_{u \in N_s(v) \cap P'_f} g(u) + \sum_{u \in N_s(v) - P'_f} g(u)$$

$$= \sum_{u \in N_s(v) \cap P'_f} (f(v_i) + \frac{x_i}{M'}) + \sum_{u \in N_s(v) - P'_f} f(u)$$

$$= \sum_{u \in N_s(u)} f(u) + \frac{1}{M'} \sum_i x_i$$
If $v \in B^s_f$, then $\sum_i x_i = \sum_{j=1}^n a_{ij}x_i = 0$.
(since v weakly dominates P_f and hence $a_{ij} = 1$).
Therefore, $g(N_s(v)) = f(N_s(v)) = 1$.
Suppose $v \notin B^s_f$.
Then $f(N_s(v)) > 1$.
Choose $M'' > 0$ such that $g(N_s(v)) > 1$, $\forall v \notin B^s_f$.
Let $M = max\{M', M''\}$.
For this choice of M , we have
 $0 \le g(v) \le 1$ and $\sum_{u \in N_s(v)} g(v) \ge 1$, $\forall v \in V$
Therefore, g is a TSDF.
From what we have seen above,
 $B^s_f = B^s_g$ and $P_f = P_g$.
Since f is a MTSDF. B^s_f weakly dominates P_f .
Therefore, B^s_g weakly dominates P_g . Therefore, g is a MTSDF.
Hence f is not a BMTSDF.
Forollary 0.9 : Let $G = (V, E)$ be a graph without isolated vertices. Let S be
set of G. Then x_s is a BMTSDF.
Proof:
Charly $v \neq i$ is a MTSDF.

Clearly, χ_s is a MTSDF.

Let $f = \chi_s$.

$$P'_f = \phi.$$

Therefore from the above theorem, χ_s is a BMTSDF.

Example 0.10:

Consider Hajo's Graph H_3 :

a minimal total strong dominating

Define f_1 and f_2 as follows: $f_1(v_1) = f_1(v_4) = f_1(v_2) = f_1(v_6) = 0.$ $f_1(v_3) = f_1(v_5) = 1.$

Consider the system of linear equations given by $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0$

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{1n}x_n = 0.$

Since $P'_{f_1} = \phi$, the system of equations does not occur and hence does not have a non-trivial solution. Therefore, f_1 is a BMTSDF.

 f_2 is a TSDF.

 $B_{f_2}^s = V, \ P_{f_2} = \{v_2, v_3, v_4\}.$ $P_{f_2}' = \{v_2, v_3, v_4\}.$

 $x_i = 0, \forall i, 1 \le i \le 5.$

Therefore, f_1 is a BMTSDF.

Example 0.	0	1	1	0	0	1	1	1	0	
Consider	P_0 ·	•							•	
Constact	19.	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9

Define f_1 on $V(P_9)$ as follows:

 $f_1(v_1) = f_1(v_4) = f_1(v_5) = f_1(v_9) = 0.$

$$f_1(v_2) = f_1(v_3) = f_1(v_6) = f_1(v_7) = f_1(v_8) = 1$$

 f_1 is a TSDF.

 $B_{f_1}^s = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}.$ $P_{f_1} = \{v_2, v_3, v_6, v_7, v_8\}.$ $B_{f_1}^s \text{ weakly dominates } P_{f_1}.$ Therefore, f_1 is a MTSDF.

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Define f_1 on $V(P_{11})$ as follows: $f_1(v_1) = f_1(v_4) = f_1(v_5) = f_1(v_8) = f_1(v_{11}) = 0.$ 0

1

 $v_{10} \quad v_{11}$

$$\begin{split} f_1(v_2) &= f_1(v_3) = f_1(v_6) = f_1(v_7) = f_1(v_9) = f_1(v_{10}) = 1. \\ f_1 \text{ is a TSDF.} \\ B_{f_1}^s &= \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_9, v_{10}, v_{11}\}. \\ P_{f_1} &= \{v_2, v_3, v_6, v_7, v_9, v_{10}\}. \\ B_{f_1}^s \text{ weakly dominates } P_{f_1}. \\ \text{Therefore, } f_1 \text{ is a MTSDF.} \end{split}$$

$$A = \begin{bmatrix} v_{2} & v_{3} & v_{6} & v_{7} & v_{8} \\ v_{1} & 1 & 0 & 0 & 0 & 0 \\ v_{2} & 0 & 1 & 0 & 0 & 0 \\ v_{3} & 1 & 0 & 0 & 0 & 0 \\ v_{4} & 0 & 1 & 0 & 0 & 0 \\ v_{5} & 0 & 0 & 1 & 0 & 0 \\ v_{6} & 0 & 0 & 0 & 1 & 0 \\ v_{8} & 0 & 0 & 0 & 1 & 0 \\ v_{9} & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 $x_i = 0, \forall i, 1 \le i \le 6.$

Therefore, f_1 is a BMTSDF.

Again consider

Define f_2 on $V(P_{11})$ as follows:

$$\begin{split} f_2(v_1) &= f_2(v_5) = f_2(v_6) = f_2(v_{11}) = 0. \\ f_2(v_2) &= f_2(v_3) = f_2(v_4) = f_2(v_7) = f_2(v_8) = f_2(v_9) = f_2(v_{10}) = 1. \\ f_2 \text{ is a TSDF.} \\ B_{f_2}^s &= \{v_1, v_2, v_4, v_5, v_6, v_7, v_{10}, v_{11}\}. \\ P_{f_2} &= \{v_2, v_3, v_4, v_7, v_8, v_9, v_{10}\}. \\ B_{f_2}^s \text{ weakly dominates } P_{f_2}. \end{split}$$

		v_2	v_3	v_4	v_7	v_8	v_9	v_{10}				
	v_1	1	0	0	0	0	0	0				
	v_2	0	1	0	0	0	0	0		ı— —		
	v_4	0	1	0	0	0	0	0		x_1		0
	v_5	0	0	1	0	0	0	0		x_2		0
B =	v_6	0	0	0	1	0	0	0		$\begin{array}{c} x_3 \\ x_4 \end{array}$	=	00
	v_7	0	0	0	0	1	0	0		$\begin{array}{c} x_5 \\ x_c \end{array}$		0
	v_{10}	0	0	0	0	0	1	0		x_7		
	v_{11}	0	0	0	0	0	0	1				
	I	-							L			

$$\begin{split} x_i &= 0, \ \forall \ i, \ 1 \leq i \leq 7. \\ \text{Therefore, } f_2 \ \text{is a BMTSDF.} \\ \textit{Example 0.15:} \\ \text{Let } G &= C_{2n+1}. \\ \text{Let } V(G) &= \{v_1, v_2, ..., v_{2n+1}\}. \\ \text{Case (i)} \\ \text{Let } n &\equiv 0 \ (mod \ 2). \\ \text{Let } n &= 2k. \\ \text{Then } 2n+1 &= 4k+1. \\ \text{Let } f(v_i) &= \begin{cases} 1, \ if \ i \equiv 1, 2 \ (mod \ 4) \\ 0, \ if \ i \equiv 3, 0 \ (mod \ 4). \end{cases} \\ \text{Then } f \ \text{is a TSDF.} \\ B_f^s &= \{v_2, v_3, v_4, v_5, ..., v_{4k+1}\} \\ P_f &= \{v_1, v_5, ..., v_{4k+1}, v_2, v_6, ..., v_{4k-2}\} \\ \text{Clearly, } B_f^s \ \text{weakly dominates } P_f. \\ \text{Therefore, } f \ \text{is a MTSDF.} \end{cases} \end{split}$$

Therefore, $x_i = 0, \forall i, 1 \le i \le 2k + 1$. Therefore, f is a BTMSDF. **Case (ii)** Let $n \equiv 1 \pmod{2}$. Let $n \equiv 2k + 1$. Then 2n + 1 = 4k + 3. Let $f(v_i) = \begin{cases} 1, & if \ i \equiv 1, 2 \pmod{4} \\ 0, & if \ i \equiv 3, 0 \pmod{4} \\ 0, & if \ i \equiv 3, 0 \pmod{4} \end{cases}$. Then f is a TSDF. $B_f^s = \{v_1, v_2, v_5, v_6, ..., v_{4k+2}\}$. $P_f = \{v_1, v_2, v_5, v_6, ..., v_{4k+1}, v_{4k+2}\}$. Clearly, B_f^s weakly dominates P_f . Therefore, f is a MTSDF.

Therefore,
$$x_i = 0, \forall i, 1 \le i \le 2k + 2$$
.
Therefore, f is a BTMSDF.
Case (iii)
Let $G = C_{2n}$.
Let $V(G) = \{v_1, v_2, ..., v_{2n}\}$.
Let $f(v_i) = \begin{cases} 1, & if \ i \equiv 1, 2 \pmod{4} \\ 0, & otherwise. \end{cases}$
Clearly, f is a TSDF.
 $B_f^s = \begin{cases} V, & if \ n \equiv 2 \pmod{4} \\ V - \{v_1, v_{2n}\}, & if \ n \equiv 1 \pmod{4}. \end{cases}$
 $P_f = \begin{cases} \{v_1, v_5, ..., v_{2n-3}, v_2, v_6, ..., v_{2n-2}\}, & if \ n \equiv 1 \pmod{4}. \\ \{v_1, v_5, ..., v_{2n-1}, v_2, v_6, ..., v_{2n}\}, & if \ n \equiv 1 \pmod{4}. \end{cases}$

Clearly, B_f^s weakly dominates P_f . Therefore, f is a MTSDF. Let $n \equiv 2 \pmod{4}$.

AX = 0 implies X = 0. Therefore, f is a BMTSDF. Let $n \equiv 1 \pmod{4}$.

REFERENCES

- [1] Acharya, B.D., The Strong Domination Number of a Graph and Related Concepts, J.Math. Phys. Sci., 14,471-475(1980).
- [2] Allan R.B., and Laskar.R.C., On Domination and Independent Domination Number of a Graph, Dicrete Math., 23, 73-76(1978).
- [3] Arumugam.S. and Regikumar.K., Basic Minimal Dominating Functions, Utilitas Mathematica, 77, pp. 235-247(2008).
- [4] Arumugam.S. and Regikumar.K., *Fractional Independence and Fractional Domination Chain in Graphs*, AKCE J.Graphs Combin., 4, No.2, pp.161-169(2007).
- [5] Arumugam.S. and Sithara Jerry.A., *A Note On Independent Domination in Graphs*, Bulletin of the Allahabad Mathematical Society, Volume 23, Part 1.(2008).
- [6] Arumugam.S. and Sithara Jerry.A., Fractional Edge Domination in Graphs, Appl. Anal. Discrete Math., (2009).

- [7] Berge.C., Theory of Graphs and its Applications, Dunod, Paris(1958).
- [8] Berge.C., Graphs and Hypergraphs, North-Holland, Amsterdam(1973).
- [9] Cockayne E.J., Dawes R.M. and Hedetniemi.S.T., Total domination in graphs, Networks, 10, 211-219(1980).
- [10] Cockayne E.J., Favaron O., Payan C. and Thomasaon A.G., Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math., 33, 249-258(1981).
- [11] Cockayne E.J., MacGillivray G. and Mynhardt C.M., Convexity of minimal dominating functions and universal in graphs, Bull. Inst. Combin. Appl., 5, 37-38(1992).
- [12] Cockayne E.J. and Mynhardt C.M., Convexity of minimal dominating functions of trees: A survey, Quaestiones Math., 16, 301-317(1993).
- [13] Cockayne E.J., MacGillivray G. and Mynhardt C.M., *Convexity of minimal dominating functions of trees-II*, Discrete Math., 125, 137-146(1994).
- [14] Cockayne E.J. and Mynhardt C.M., A characterization of universal minimal total dominating functions in trees, Discrete Math., 141, 75-84(1995).
- [15] Cockayne.E.J., Fricke.G., Hedetniemi.S.T. and Mynhardt.C.M., Properties of Minimal Dominating Functions of Graphs, Ars Combin., 41,107-115(1995).
- [16] Cockayne E.J., MacGillivray G. and Mynhardt C.M., *Convexity of minimal dominating functions of trees*, Utilitas Mathematica, 48, 129-144(1995).
- [17] Cockayne.E.J. and Hedetniemi.S.T., Towards a Theory of Domination in Graphs, Networks, 7,247-261(1977).
- [18] Cockayne.E.J. and Mynhardt.C.M., *Minimality and Convexity of dominating and related functions in Graphs*, A unifying theory, Utilitas Mathematica, 51,145-163(1997).
- [19] Cockayne.E.J. and Mynhardt.C.M. and Yu.B., Universal Minimal Total Dominating Functions in Graphs, Networks, 24, 83-90(1994).
- [20] Grinstead D. and Slater P.J., Fractional Domination and Fractional Packing in Graphs, Congr., Numer., 71, 153-172(1990).
- [21] Harary.F., Graph Theory, Addison-Wesley, Reading, Mass(1969).
- [22] Hedetniemi.S.T. and Laskar.R.L., *Bibliography on Domination in Graphs and Some Basic Definitions of Domination Parameters*, Discrete Math., 86,pp 257-277(1990).
- [23] Ore.O, Theory of Graphs, AMS(1962).
- [24] Regikumar K., Dominating Functions Ph.D thesis, Manonmaniam Sundaranar University(2004).
- [25] Sampathkumar.E and Pushpa Latha.L., *Strong Weak Domination and Domination Balance in a Graph*, Discrete Math., 161,235-242(1996).
- [26] Scheinerman E.R. and Ullman D.H., Fractional Graph Theory: A rational approach to the theory of graphs, John Wiley and Sons Inc.,(1997).
- [27] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc.,(1998).
- [28] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Domination in Graphs: Advanced Topics Marcel Dekker Inc., New York(1998).
- [29] Yu.B., Convexity of Minimal Total Dominating Functions in Graphs, J.Graph Theory, 24,313-321(1997).