Basic Maximal Total Strong Dominating Functions

Dr. M. Kavitha ${ }^{1, *}$,
${ }^{1}$ Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore - 641407, India.

Let $G=(V, E)$ be a simple graph. A subset D of $V(G)$ is called a total strong dominating set of G, if for every $u \in V(G)$, there exists a $v \in D$ such that u and v are adjacent and $\operatorname{deg}(v) \geq \operatorname{deg}(u)$. The minimum cardinality of a total strong dominating set of G is called total strong domination number of G and is denoted by $\gamma_{t}^{S}(G)$. Corresponding to total strong dominating set of G, total strong dominating function can be defined. The minimum weight of a total strong dominating function is called the fractional total strong domination number of G and is denoted by $\gamma_{s f}^{t}(G)$. A study of total strong dominating functions is carried out in this paper.
Keywords: Total Strong Dominating Function, Maximal Total Strong Dominating Function, Basic Maximal Total Strong Dominating Function
Introduction: Corresponding to total strong dominating sets in a graph, total strong dominating functions may be defined. The minimality of a total strong dominating function can be characterised. Convex combination of minimal total strong dominating function is defined and studied. A total strong dominating function is basic, if it cannot be expressed as a covex combination of minimal total strong dominating functions. Basic total strong dominating functions are characterised.

Definition 0.1:

Let $G=(V, E)$ be a simple graph without strong isolates. A function
$f: V(G) \rightarrow[0,1]$ is called a Total Strong Dominating Function (TSDF), if $f\left(N_{s}(u)\right)=\sum_{v \in N_{s}(u)} f(v) \geq 1, \forall u \in$
$V(G)$, where
$N_{s}(u)=\{x \in N(u): \operatorname{deg}(x) \geq \operatorname{deg}(u)\}$.
Definition 0.2:
A TSDF is called a Minimal Total Strong Dominating Function (MTSDF), if whenever $g: V(G) \rightarrow[0,1]$ and $g<f, g$ is not a TSDF.

Definition 0.3: Let G be a graph without isolated vertex. A TSDF (MTSDF) is called a basic TSDF (basic MTSDF) denoted by BTSDF (BMTSDF) if it cannot be expressed as a proper convex combination of two distinct $\mathrm{TSDF}^{s}\left(\mathrm{MTSDF}^{s}\right)$.

Remark 0.4: A BTSDF need not be a BMTSDF.

Lemma 0.5: Let f and g be two distinct MTSDF^{s} of a graph G with $B_{f}^{s}=B_{g}^{s}$ and $P_{f}=P_{g}$. Let $\delta(v)=f(v)-g(v)$, for every $v \in V$. Then
(i) If $f(v)=0$ or $f(v)=1$, then $\delta(v)=0$.
(ii) $\sum_{u \in N_{s}(v)} \delta(v)=0, \forall v \in B_{f}^{s}$.
(iii) $\sum_{u \in N_{s}(v)} \delta(v)=0, \forall v \in B_{g}^{s}$.

Proof:

(i) We have, $f(v)=1$ if and only if $g(v)=1$ and

$$
f(v)=0 \text { if and only if } g(v)=0
$$

Therefore, (i) follows.
(ii) Let $v \in B_{f}^{s}$.

Then $v \in B_{g}^{s}$.

$$
\begin{aligned}
\sum_{v \in N_{s}(v)} \delta(v)^{g} & =\sum_{u \in N_{s}(v)}(f(u)-g(u)) \\
& =\sum_{u \in N_{s}(v)} f(u)-\sum_{u \in N_{s}(v)} g(u) \\
& =1-1\left(\text { since } v \in B_{f}^{s} \text { and } v \in B_{g}^{s}\right) \\
& =0
\end{aligned}
$$

Therefore, (ii) follows.
(iii) is similar to (ii).

Lemma 0.6: Let f and g be convex linear combination of $\mathrm{MTSDF}^{s} g_{1}, g_{2}, \ldots, g_{n}$ such that f is minimal. Then $B_{f}^{s}=B_{g}^{s}=\bigcap_{i=1}^{n} B_{g_{i}}^{s}, P_{f}=P_{g}=\bigcup_{i=1}^{n} P_{g_{i}}$ and g is minimal.
Proof:
Let $v \in P_{f}$.
Then $f(v)>0$.
Let $f=\sum_{i=1}^{n} \lambda_{i} g_{i}, 0<\lambda_{i}<1, \sum_{i=1}^{n} \lambda_{i}=1$.
Suppose $g_{i}(v)=0, \forall i$. Then $f(v)=0$, a contradiction.
Therefore, $g_{i}(v)>0$, for at least one i. Therefore, $v \in \bigcup_{i=1}^{n} P_{g_{i}}$.
Therefore, $P_{f} \subseteq \bigcup_{i=1}^{n} P_{g_{i}}$. Suppose $v \in \bigcup_{i=1}^{n} P_{g_{i}}$.
Then $g\left(v_{i}\right)>0$, for some i. Therefore, $f(v)>0$.
Therefore, $v \in P_{f}$. Therefore, $\bigcup_{i=1}^{n} P_{g_{i}} \subseteq P_{f}$.
Therefore, $P_{f}=\bigcup_{i=1}^{n} P_{g_{i}}$. Similarly, $P_{g}=\bigcup_{i=1}^{n} P_{g_{i}}$.
Therefore, $P_{f}=P_{g}=\bigcup_{i=1}^{n} P_{g_{i}}$. Let $v \in B_{f}^{s}$.
Then $f\left(N_{s}(v)\right)=1$. Therefore, $\sum_{i=1}^{n} \lambda_{i} g_{i}\left(N_{s}(v)\right)=1$.
Suppose $v \notin B_{g_{i}}^{s}$, for some $i, 1 \leq i \leq n$. Then $g_{i}\left(N_{s}(v)\right)>1$.
Since $g_{i}\left(N_{s}(v)\right) \geq 1$, for all $j, 1 \leq j \leq n$,

$$
\begin{aligned}
& \sum_{i=1}^{n} \lambda_{i} g_{i}\left(N_{s}(v)\right)> \sum_{i=1}^{n} \lambda_{i} . \\
&=1, \text { a contradiction. }
\end{aligned}
$$

Therefore, $v \in B_{g_{i}}^{s}, \forall i$. Therefore, $v \in \bigcap_{i=1}^{n} B_{g_{i}}^{s}$.
Therefore, $B_{f}^{s} \subseteq \bigcap_{i=1}^{n} B_{g_{i}}^{s}$.
Let $v \in \bigcap_{i=1}^{n} B_{g_{i}}^{s}$. Then $g_{i}\left(N_{s}(v)\right)=1$, for all $i, 1 \leq i \leq n$.
Therefore, $\sum_{i=1}^{n} \lambda_{i} g_{i}\left(N_{s}(v)\right)=\sum_{i=1}^{n} \lambda_{i}=1$.
Therefore, $f\left(N_{s}(v)\right)=1$. Therefore, $v \in B_{f}^{s}$.
Therefore, $\bigcap_{i=1}^{n} B_{g_{i}}^{s} \subseteq B_{f}^{s}$. Therefore, $B_{f}^{s}=\bigcap_{i=1}^{n} B_{g_{i}}^{s}$.
Similarly, $B_{g}^{s}=\bigcap_{i=1}^{n} B_{g_{i}}^{s}$. Hence $B_{f}^{s}=B_{g}^{s}=\bigcap_{i=1}^{n} B_{g_{i}}^{s}$.
Since f is minimal, B_{f}^{s} weakly dominates $\stackrel{i=1}{P_{f}}$.
That is, $\bigcap_{i=1}^{n} B_{g_{i}}^{s}$ weakly dominates $\bigcup_{i=1}^{n} P_{g_{i}}$.
That is, $\stackrel{i=1}{B_{g}^{s}}$ weakly dominates P_{g}.
Hence g is a MTSDF.
Theorem 0.7: Let f be a MTSDF. Then f is a BMTSDF if and only if there does not exist an MTSDF g such that $B_{f}^{s}=B_{g}^{s}$ and $P_{f}=P_{g}$.

Proof:

Suppose f is a BMTSDF.
Suppose there exists a MTSDF g such that $B_{f}^{s}=B_{g}^{s}$ and $P_{f}=P_{g}$.
Let $S=\left\{a \in \Re: h_{a}=(1+a) g-a f\right\}$ be a TSDF and $B_{h_{a}}^{s}=B_{f}^{s}$ and $P_{h_{a}}=P_{f}$.
Then S is a bounded open interval.
Let $S=\left(k_{1}, k_{2}\right)$.
Then $k_{1}<-1<0<k_{2}$.
Also $h_{k_{1}}$ and $h_{k_{2}}$ are MTSDF ${ }^{s}$.
$h_{k_{1}}=\left(1+k_{1}\right) g-k_{1} f$.
Therefore, $f=\frac{\left(1+k_{1}\right) g}{k_{1}}-\frac{h k_{1}}{k_{1}}$.
Let $\lambda_{1}=\frac{1+k_{1}}{k_{1}}$ and $\lambda_{2}=\frac{-1}{k_{1}}$.
Therefore, λ_{1} and λ_{2} are positive and $\lambda_{1}+\lambda_{2}=1$.
Therefore, f is a convex combination of g and $h_{k_{1}}$.
Therefore, f is not a BMTSDF, a contradiction.
Therefore, there does not exist a MTSDF g such that $B_{f}^{s}=B_{g}^{s}$ and $P_{f}=P_{g}$.
Conversely, suppose f is not a BMTSDF.
Then there exists MTSDF ${ }^{s} g_{1}, g_{2}, \ldots, g_{n}$ such that $f=\sum_{i=1}^{n} \lambda_{i} g_{i}$,
where $0<\lambda_{i}<1$ and $\sum_{i=1}^{n} \lambda_{i}=1$.

Let $g=\sum_{i=1}^{n} \mu_{i} g_{i}, 0<\mu_{i}<1$ and $\sum_{i=1}^{n} \mu_{i}=1$.
Then by lemma 0.6. $B_{f}^{s}=B_{g}^{s}=\bigcap_{i=1}^{n} B_{g_{i}}^{s}$ and $P_{f}=P_{g}=\bigcup_{i=1}^{n} P_{g_{i}}$ and since f is a MTSDF, g is a MTSDF.
Thus there exists a MTSDF g such that $B_{f}^{s}=B_{g}^{s}$ and $P_{f}^{i=1}=P_{g}$.
Hence the theorem.
Theorem 0.8: Let f be a MTSDF of a graph $G=(V, E)$ with $B_{f}^{s}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $P_{f}^{\prime}=\{u \in V: 0<$ $f(u)<1\}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.
Let $A=\left[a_{i j}\right]$ be a $m \times n$ matrix defined by
$a_{i j}=\left\{\begin{array}{l}1, \text { if } v_{i} \text { weakly dominates } u_{j} \\ 0, \text { otherwise. }\end{array}\right.$
Consider the system of linear equations given by $\sum_{j=1}^{n} a_{i j} x_{j}=0,1 \leq i \leq m$.
Then f is a BMTSDF if and only if the above system does not have a non-trivial solution.

Proof:

Suppose f is not a BMTSDF.
Then there exists a MTSDF g such that $B_{f}^{s}=B_{g}^{s}$ and $P_{f}=P_{g}$.
Let $x_{j}=f\left(u_{j}\right)-g\left(u_{j}\right), 1 \leq j \leq n$.
Suppose $x_{j}=0, \forall j, 1 \leq j \leq n$.
If $f(v)=0$, then $v \notin P_{f}=P_{g}$.
Therefore, $g(v)=0$.
Therefore, $f(v)-g(v)=0, \forall v \notin P_{f}$.
That is, $f(v)=g(v), \forall v \notin P_{f}$.
If $f(v)=1$, then by Theorem ??, $g(v)=1$ and hence $f(v)-g(v)=0$.
Therefore, $f=g$, a contradiction.
Therefore, there exists, some $j, 1 \leq j \leq n$ such that $x_{j} \neq 0$.
Let $f\left(u_{j_{1}}\right)-g\left(u_{j_{1}}\right) \neq 0$.

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & =\sum_{j=1}^{n} a_{i j}\left(f\left(u_{j}\right)-g\left(u_{j}\right)\right) \\
& =\sum_{u \in N_{s}\left(v_{i}\right)}(f(u)-g(u))
\end{aligned}
$$

(since $a_{i j}=1$ because v_{i} weakly dominates u)

$$
=0, \text { by lemma } 0.5
$$

Since $x_{j} \neq 0$, the left hand side has a non-trivial solution.
Conversely, let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a non-trivial solution for the system of linear equations.
Define $g: V(G) \rightarrow[0,1]$ as follows:
$g(v)= \begin{cases}f(v), & \text { if } v \notin P_{f}^{\prime} \\ f(v)+\frac{x_{j}}{M}, & \text { if } v=u_{j}, 1 \leq j \leq n, \text { where } M \text { is to be suitably chosen } .\end{cases}$
Since $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a non-trivial solution, $g \neq f$.
Since $0<f\left(u_{j}\right)<1$, choose $M_{j}>0$ such that $0<\left(f\left(u_{j}\right)+\frac{x_{j}}{M_{j}}\right)<1$, for each $\mathbf{j}, 1 \leq j \leq n$.
Let $M^{\prime}=\max \left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$.
Choose M to be equal to M'.

For any $v \in V, g\left(N_{s}(v)\right)=\sum_{u \in N_{s}(v)} g(u)$

$$
\begin{aligned}
& =\sum_{u \in N_{s}(v) \cap P_{f}^{\prime}} g(u)+\sum_{u \in N_{s}(v)-P_{f}^{\prime}} g(u) \\
& =\sum_{u_{i} \in N_{s}(v) \cap P_{f}^{\prime}}\left(f\left(v_{i}\right)+\frac{x_{i}}{M^{\prime}}\right)+\sum_{u \in N_{s}(v)-P_{f}^{\prime}} f(u) \\
& =\sum_{u \in N_{s}(u)} f(u)+\frac{1}{M^{\prime}} \sum_{i} x_{i} \\
& =f\left(N_{s}(v)\right)+\frac{1}{M^{\prime}} \sum_{i} x_{i}
\end{aligned}
$$

If $v \in B_{f}^{s}$, then $\sum_{i} x_{i}=\sum_{j=1}^{n} a_{i j} x_{i}=0$.
(since v weakly dominates P_{f} and hence $a_{i j}=1$).
Therefore, $g\left(N_{s}(v)\right)=f\left(N_{s}(v)\right)=1$.
Suppose $v \notin B_{f}^{s}$.
Then $f\left(N_{s}(v)\right)>1$.
Choose $M^{\prime \prime}>0$ such that $g\left(N_{s}(v)\right)>1, \forall v \notin B_{f}^{s}$.
Let $M=\max \left\{M^{\prime}, M^{\prime \prime}\right\}$.
For this choice of M, we have
$0 \leq g(v) \leq 1$ and $\sum_{u \in N_{s}(v)} g(v) \geq 1, \forall v \in V$
Therefore, g is a TSDF.
From what we have seen above,
$B_{f}^{s}=B_{g}^{s}$ and $P_{f}=P_{g}$.
Since f is a MTSDF, B_{f}^{s} weakly dominates P_{f}.
Therefore, B_{g}^{s} weakly dominates P_{g}. Therefore, g is a MTSDF.
Hence f is not a BMTSDF.
Corollary 0.9: Let $G=(V, E)$ be a graph without isolated vertices. Let S be a minimal total strong dominating set of G. Then χ_{s} is a BMTSDF.
Proof:
Clearly, χ_{s} is a MTSDF.
Let $f=\chi_{s}$.
$P_{f}^{\prime}=\phi$.
Therefore from the above theorem, χ_{s} is a BMTSDF.

Example 0.10:

Consider Hajo's Graph H_{3} :

Define f_{1} and f_{2} as follows:
$f_{1}\left(v_{1}\right)=f_{1}\left(v_{4}\right)=f_{1}\left(v_{2}\right)=f_{1}\left(v_{6}\right)=0$.
$f_{1}\left(v_{3}\right)=f_{1}\left(v_{5}\right)=1$.
$f_{2}\left(v_{1}\right)=f_{2}\left(v_{4}\right)=f_{2}\left(v_{6}\right)=0$.
$f_{2}\left(v_{2}\right)=f_{2}\left(v_{3}\right)=f_{2}\left(v_{5}\right)=\frac{1}{2}$.
$f_{1}:$

f_{1} is a TSDF.

$B_{f_{1}}^{s}=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$.
$P_{f_{1}}=\left\{v_{3}, v_{5}\right\}$.
$B_{f_{1}}^{s}$ weakly dominates $P_{f_{1}}$.
Therefore, f_{1} is a MTSDF.
Therefore, f_{2} is a TSDF.
$B_{f_{2}}^{s}=V$.
$B_{f_{2}}^{s}$ weakly dominates $P_{f_{2}}$.
f_{2} is a MTSDF.
$P_{f_{1}}^{\prime}=\phi$.
Let $A=\left[a_{i j}\right]_{m \times n}$ be a $m \times n$ matrix defined by
$a_{i j}=\left\{\begin{array}{ll}1, & \text { if } v_{i} \in B_{f}^{s} \text { weakly dominates } u_{j} \text { in } P_{f}^{\prime} \\ 0, & \text { otherwise. }\end{array}\right.$.
Consider the system of linear equations given by
$a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0$
$a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{1 n} x_{n}=0$.
Since $P_{f_{1}}^{\prime}=\phi$, the system of equations does not occur and hence does not have a non-trivial solution.
Therefore, f_{1} is a BMTSDF.
f_{2} is a TSDF.
$B_{f_{2}}^{s}=V, P_{f_{2}}=\left\{v_{2}, v_{3}, v_{4}\right\}$.
$P_{f_{2}}^{\prime}=\left\{v_{2}, v_{3}, v_{4}\right\}$.

$$
\begin{aligned}
& A=\left[a_{i j}\right]_{6 \times 3}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]_{6 \times 3} \\
& \left\{\begin{array}{l}
x_{1}+x_{2}=0 \\
x_{2}=0 \\
x_{1}=0 \\
x_{2}=0
\end{array} \quad \text { imply } x_{1}=0, x_{2}=0\right.
\end{aligned}
$$

Therefore, f_{2} is a BMTSDF.
Example 0.11:

f_{1} is a TSDF.
$B_{f_{1}}^{s}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$.
$P_{f_{1}}=\left\{v_{2}, v_{3}, v_{4}\right\}$.
$B_{f_{1}}^{s}$ weakly dominates $P_{f_{1}}$.
$A=\left[a_{i j}\right]_{4 \times 3}=$

v_{2}	v_{3}	v_{4}
v_{1}		
v_{2}		
v_{4}		
v_{5}		

0 \& 1 \& 0

0 \& 1 \& 0

0 \& 0 \& 1\end{array}\right]\left[$$
\begin{array}{c}x_{1} \\
x_{2} \\
x_{3}\end{array}
$$\right]\)
$x_{1}=0, x_{2}=0, x_{3}=0$.
Therefore, f_{1} is a BMTSDF.
Example 0.12:
Consider

Define f_{1} on $V\left(P_{6}\right)$ as follows:
$f_{1}\left(v_{1}\right)=f_{1}\left(v_{4}\right)=f_{1}\left(v_{5}\right)=f_{1}\left(v_{9}\right)=0$.
$f_{1}\left(v_{2}\right)=f_{1}\left(v_{3}\right)=f_{1}\left(v_{6}\right)=f_{1}\left(v_{7}\right)=f_{1}\left(v_{8}\right)=1$.
f_{1} is a TSDF.
$B_{f_{1}}^{s}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{8}, v_{9}\right\}$.
$P_{f_{1}}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, v_{8}\right\}$.
$B_{f_{1}}^{s}$ weakly dominates $P_{f_{1}}$.
Therefore, f_{1} is a MTSDF.

$$
A=\begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6} \\
v_{8} \\
v_{0}
\end{gathered}\left[\begin{array}{ccccc}
v_{2} & v_{3} & v_{6} & v_{7} & v_{8} \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
v_{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$x_{i}=0, \forall i, 1 \leq i \leq 5$.
Therefore, f_{1} is a BMTSDF.
Example 0.13:
Consider

Define f_{1} on $V\left(P_{9}\right)$ as follows:
$f_{1}\left(v_{1}\right)=f_{1}\left(v_{4}\right)=f_{1}\left(v_{5}\right)=f_{1}\left(v_{9}\right)=0$.
$f_{1}\left(v_{2}\right)=f_{1}\left(v_{3}\right)=f_{1}\left(v_{6}\right)=f_{1}\left(v_{7}\right)=f_{1}\left(v_{8}\right)=1$.
f_{1} is a TSDF.
$B_{f_{1}}^{s}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$.
$P_{f_{1}}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, v_{8}\right\}$.
$B_{f_{1}}^{s}$ weakly dominates $P_{f_{1}}$.
Therefore, f_{1} is a MTSDF.
$A=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_{8} \\ x_{9}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
$x_{i}=0, \forall i=1 \leq 5$.
$x_{i}=0, \forall i, 1 \leq i \leq 5$.
Therefore, f_{1} is a BMTSDF.
Example 0.14:

Define f_{1} on $V\left(P_{11}\right)$ as follows:
$f_{1}\left(v_{1}\right)=f_{1}\left(v_{4}\right)=f_{1}\left(v_{5}\right)=f_{1}\left(v_{8}\right)=f_{1}\left(v_{11}\right)=0$.
$f_{1}\left(v_{2}\right)=f_{1}\left(v_{3}\right)=f_{1}\left(v_{6}\right)=f_{1}\left(v_{7}\right)=f_{1}\left(v_{9}\right)=f_{1}\left(v_{10}\right)=1$.
f_{1} is a TSDF.
$B_{f_{1}}^{s}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{9}, v_{10}, v_{11}\right\}$.
$P_{f_{1}}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, v_{9}, v_{10}\right\}$.
$B_{f_{1}}^{s}$ weakly dominates $P_{f_{1}}$.
Therefore, f_{1} is a MTSDF.

$$
A=\begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6} \\
v_{8} \\
v_{9}
\end{gathered}\left[\begin{array}{ccccc}
v_{2} & v_{3} & v_{6} & v_{7} & v_{8} \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
-
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$x_{i}=0, \forall i, 1 \leq i \leq 6$.
Therefore, f_{1} is a BMTSDF.
Again consider

Define f_{2} on $V\left(P_{11}\right)$ as follows:
$f_{2}\left(v_{1}\right)=f_{2}\left(v_{5}\right)=f_{2}\left(v_{6}\right)=f_{2}\left(v_{11}\right)=0$.
$f_{2}\left(v_{2}\right)=f_{2}\left(v_{3}\right)=f_{2}\left(v_{4}\right)=f_{2}\left(v_{7}\right)=f_{2}\left(v_{8}\right)=f_{2}\left(v_{9}\right)=f_{2}\left(v_{10}\right)=1$.
f_{2} is a TSDF.
$B_{f_{2}}^{s}=\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}, v_{7}, v_{10}, v_{11}\right\}$.
$P_{f_{2}}=\left\{v_{2}, v_{3}, v_{4}, v_{7}, v_{8}, v_{9}, v_{10}\right\}$.
$B_{f_{2}}^{s}$ weakly dominates $P_{f_{2}}$.

$$
B=\begin{gathered}
v_{1} \\
v_{2} \\
v_{4} \\
v_{5} \\
v_{6} \\
v_{7} \\
v_{10} \\
v_{11}
\end{gathered}\left[\begin{array}{ccccccc}
v_{2} & v_{3} & v_{4} & v_{7} & v_{8} & v_{9} & v_{10} \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$x_{i}=0, \forall i, 1 \leq i \leq 7$.
Therefore, f_{2} is a BMTSDF.
Example 0.15:
Let $G=C_{2 n+1}$.
Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{2 n+1}\right\}$.
Case (i)
Let $n \equiv 0(\bmod 2)$.
Let $n=2 k$.
Then $2 n+1=4 k+1$.
Let $f\left(v_{i}\right)= \begin{cases}1, & \text { if } i \equiv 1,2(\bmod 4) \\ 0, & \text { if } i \equiv 3,0(\bmod 4) .\end{cases}$
Then f is a TSDF.
$B_{f}^{s}=\left\{v_{2}, v_{3}, v_{4}, v_{5}, \ldots, v_{4 k+1}\right\}$
$P_{f}=\left\{v_{1}, v_{5}, \ldots, v_{4 k+1}, v_{2}, v_{6}, \ldots, v_{4 k-2}\right\}$
Clearly, B_{f}^{s} weakly dominates P_{f}.
Therefore, f is a MTSDF.

Therefore, $x_{i}=0, \forall i, 1 \leq i \leq 2 k+1$.
Therefore, f is a BTMSDF.
Case (ii)
Let $n \equiv 1(\bmod 2)$.
Let $n=2 k+1$.
Then $2 n+1=4 k+3$.
Let $f\left(v_{i}\right)= \begin{cases}1, & \text { if } i \equiv 1,2(\bmod 4) \\ 0, & \text { if } i \equiv 3,0(\bmod 4) .\end{cases}$
Then f is a TSDF.
$B_{f}^{s}=\left\{v_{1}, v_{2}, v_{5}, v_{6}, \ldots, v_{4 k+2}\right\}$.
$P_{f}=\left\{v_{1}, v_{2}, v_{5}, v_{6}, \ldots, v_{4 k+1}, v_{4 k+2}\right\}$.
Clearly, B_{f}^{s} weakly dominates P_{f}.
Therefore, f is a MTSDF.

Therefore, $x_{i}=0, \forall i, 1 \leq i \leq 2 k+2$.
Therefore, f is a BTMSDF.

Case (iii)

Let $G=C_{2 n}$.
Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$.
Let $f\left(v_{i}\right)= \begin{cases}1, & \text { if } i \equiv 1,2(\bmod 4) \\ 0, & \text { otherwise } .\end{cases}$
Clearly, f is a TSDF.
$B_{f}^{s}= \begin{cases}V, & \text { if } n \equiv 2(\bmod 4) \\ V-\left\{v_{1}, v_{2 n}\right\}, & \text { if } n \equiv 1(\bmod 4) .\end{cases}$
$P_{f}= \begin{cases}\left\{v_{1}, v_{5}, \ldots, v_{2 n-3}, v_{2}, v_{6}, \ldots, v_{2 n-2}\right\}, & \text { if } n \equiv 2(\bmod 4) \\ \left\{v_{1}, v_{5}, \ldots, v_{2 n-1}, v_{2}, v_{6}, \ldots, v_{2 n}\right\}, & \text { if } n \equiv 1(\bmod 4) .\end{cases}$

Clearly, B_{f}^{s} weakly dominates P_{f}.
Therefore, f is a MTSDF.
Let $n \equiv 2(\bmod 4)$.

$A X=0$ implies $X=0$.
Therefore, f is a BMTSDF.
Let $n \equiv 1(\bmod 4)$.

Therefore, f is a BMTSDF.

References

[1] Acharya, B.D., The Strong Domination Number of a Graph and Related Concepts, J.Math. Phys. Sci., 14,471-475(1980).
[2] Allan R.B., and Laskar.R.C., On Domination and Independent Domination Number of a Graph, Dicrete Math., 23, 73-76(1978).
[3] Arumugam.S. and Regikumar.K., Basic Minimal Dominating Functions, Utilitas Mathematica, 77, pp. 235-247(2008).
[4] Arumugam.S. and Regikumar.K., Fractional Independence and Fractional Domination Chain in Graphs, AKCE J.Graphs Combin., 4, No.2, pp.161-169(2007).
[5] Arumugam.S. and Sithara Jerry.A., A Note On Independent Domination in Graphs, Bulletin of the Allahabad Mathematical Society, Volume 23, Part 1.(2008).
[6] Arumugam.S. and Sithara Jerry.A., Fractional Edge Domination in Graphs, Appl. Anal. Discrete Math.,(2009).
[7] Berge.C., Theory of Graphs and its Applications, Dunod, Paris(1958).
[8] Berge.C., Graphs and Hypergraphs, North-Holland, Amsterdam(1973).
[9] Cockayne E.J., Dawes R.M. and Hedetniemi.S.T., Total domination in graphs, Networks, 10, 211-219(1980).
[10] Cockayne E.J., Favaron O., Payan C. and Thomasaon A.G., Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math., 33, 249-258(1981).
[11] Cockayne E.J., MacGillivray G. and Mynhardt C.M., Convexity of minimal dominating functions and universal in graphs, Bull. Inst. Combin. Appl., 5, 37-38(1992).
[12] Cockayne E.J. and Mynhardt C.M., Convexity of minimal dominating functions of trees: A survey, Quaestiones Math., 16, 301-317(1993).
[13] Cockayne E.J., MacGillivray G. and Mynhardt C.M., Convexity of minimal dominating functions of trees-II, Discrete Math., 125, 137-146(1994).
[14] Cockayne E.J. and Mynhardt C.M., A characterization of universal minimal total dominating functions in trees, Discrete Math., 141, 75-84(1995).
[15] Cockayne.E.J., Fricke.G., Hedetniemi.S.T. and Mynhardt.C.M., Properties of Minimal Dominating Functions of Graphs, Ars Combin., 41,107-115(1995).
[16] Cockayne E.J., MacGillivray G. and Mynhardt C.M., Convexity of minimal dominating functions of trees, Utilitas Mathematica, 48, 129-144(1995).
[17] Cockayne.E.J. and Hedetniemi.S.T., Towards a Theory of Domination in Graphs, Networks, 7,247-261(1977).
[18] Cockayne.E.J. and Mynhardt.C.M., Minimality and Convexity of dominating and related functions in Graphs, A unifying theory, Utilitas Mathematica, 51,145-163(1997).
[19] Cockayne.E.J. and Mynhardt.C.M. and Yu.B., Universal Minimal Total Dominating Functions in Graphs, Networks, 24, 83-90(1994).
[20] Grinstead D. and Slater P.J., Fractional Domination and Fractional Packing in Graphs, Congr., Numer., 71, 153-172(1990).
[21] Harary.F., Graph Theory, Addison-Wesley, Reading, Mass(1969).
[22] Hedetniemi.S.T. and Laskar.R.L., Bibliography on Domination in Graphs and Some Basic Definitions of Domination Parameters, Discrete Math., 86,pp 257-277(1990).
[23] Ore.O, Theory of Graphs, AMS(1962).
[24] Regikumar K., Dominating Functions - Ph.D thesis, Manonmaniam Sundaranar University(2004).
[25] Sampathkumar.E and Pushpa Latha.L., Strong Weak Domination and Domination Balance in a Graph, Discrete Math., 161,235242(1996).
[26] Scheinerman E.R. and Ullman D.H., Fractional Graph Theory: A rational approach to the theory of graphs, John Wiley and Sons Inc.,(1997).
[27] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc.,(1998).
[28] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Domination in Graphs: Advanced Topics Marcel Dekker Inc., New York(1998).
[29] Yu.B., Convexity of Minimal Total Dominating Functions in Graphs, J.Graph Theory, 24,313-321(1997).

