
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 8 Issue 5, Sep-Oct 2024 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD69393 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 516

A Multi-Faceted Approach to Measuring Engineering Productivity

Manish Sanwal, Ishan Deva

Engineering Department, News Corporation, New York, USA

ABSTRACT

Measuring engineering productivity in software development is a
complex and nuanced challenge. This paper introduces a
comprehensive framework designed to estimate a productivity score
based on a diverse set of metrics, including Agile practices, code
contributions, code quality, review activities, QA efforts, and
deployment metrics. The proposed calculator serves as a self-
assessment tool for teams to enhance their processes, rather than as a
means to compare individual or team performances. We provide a
detailed explanation of each metric, its assigned weight, and discuss
potential risks and considerations. Real-world examples are included
to illustrate the practical application of the calculator.

KEYWORDS: Engineering Productivity, Software Metrics, Agile,

Code Quality, Software Engineering

How to cite this paper: Manish Sanwal |
Ishan Deva "A Multi-Faceted Approach
to Measuring Engineering Productivity"
Published in
International
Journal of Trend in
Scientific Research
and Development
(ijtsrd), ISSN:
2456-6470,
Volume-8 | Issue-5,
October 2024, pp.516-521, URL:
www.ijtsrd.com/papers/ijtsrd69393.pdf

Copyright © 2024 by author (s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an
Open Access article
distributed under the
terms of the Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

I. INTRODUCTION
Measuring software developer productivity has long
been a topic of interest and debate within the software
engineering community. Traditional metrics, such as
lines of code written or the number of commits, often
fail to capture the multifaceted nature of software
development activities [1]. Recent studies have
sought to understand and quantify developer
productivity in more meaningful ways.

For instance, a study by GitHub quantified the impact
of GitHub Copilot on developer productivity and
satisfaction, demonstrating that AI-assisted coding
can significantly enhance both [2]. The research
found that developers using Copilot completed tasks
faster and reported higher levels of satisfaction,
highlighting the importance of considering tools and
environmental factors when measuring productivity.

Understanding the challenges of measuring developer
productivity is essential. As noted in The Pragmatic
Engineer newsletter, measuring productivity is not
straightforward due to the intangible and creative
aspects of software development [3]. Factors such as
problem complex-ity, collaboration, and innovation
play significant roles that are difficult to quantify with
simple metrics.

Given these complexities, there is a need for a more
holistic approach to measuring devel-oper
productivity that encompasses various aspects of the
development process. This paper introduces a
productivity calculator that incorporates multiple
metrics across different domains, aiming to provide a
balanced assessment of team performance. The
calculator is designed to help teams identify areas for
improvement and foster a culture of continuous
enhancement, without using the metrics to compare
individuals or teams unfairly.

II. THE PROBLEM

Measuring developer productivity is a critical aspect
of software development, yet it remains a complex
and often frustrating challenge for engineering leaders
[5, 6]. Traditional metrics, such as lines of code
written or time spent coding, fail to capture the
nuances of a developer’s work and can incentivize
negative behaviors.

IJTSRD69393

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD69393 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 517

Figure 1: Challenge in Measuring Developer

Productivity [6]

II.1. Invisible Bottlenecks

Invisible bottlenecks are subtle obstacles that hinder
progress and are not immediately apparent to team
members or stakeholders. They reduce team
productivity and can delay timelines if not identified
and addressed. These bottlenecks may include issues
such as longer Pull Request review times, bulky code
commits, blocked tickets, or inefficient processes that
are not easily quantifiable. Identifying and addressing
these invisible bottlenecks is crucial for improving
productivity but requires a comprehensive
understanding of the development process beyond
traditional metrics.

III. GUIDELINES FOR THE

PRODUCTIVITY CALCULATOR

The productivity calculator is designed with the
following guidelines:
1. Purpose: The calculator aims to estimate a

productivity score that reflects team activities
during a given period (e.g., a sprint in Agile
methodology). It provides quantitative insights
into various aspects of the development process,
helping teams understand their performance in a
structured manner.

2. Non-Comparative Use: The calculator should not
be used to measure individual engineer
competency or to compare different teams’
performance. Productivity is influenced by
numerous factors, including project complexity,
technology stack, team dynamics, and
organizational culture. Comparing productivity
scores without considering these contextual
elements can lead to misleading conclusions and
negatively impact team morale.

3. Self-Assessment Tool: The productivity score is
intended for internal team use, similar to sprint
velocity in Agile methodology, to help identify
trends and areas for improvement. It serves as a
tool for reflection and continuous improvement
within the team. Productivity scores generated for
different teams should not be compared. Each
team operates under unique circumstances, with
varying goals, challenges, and workflows. By
focusing on their own productivity trends over

time, teams can set realistic targets, recognize
achievements, and address specific issues
affecting their performance. This approach
encourages a growth mindset and fosters a
supportive environment where teams can
collaborate effectively without the pressure of
external comparisons.

IV. METRICS AND METHODOLOGY

The productivity calculator evaluates team
performance by integrating a diverse set of metrics
across six key categories: Agile practices, code
contributions, code quality, review activities, QA
efforts, and deployment metrics. Each variable within
these metrics is assigned a specific weight, reflecting
its relative importance in the software development
process and towards the team’s goals. This multi-
faceted approach ensures a holistic assessment of the
team’s productivity by capturing various dimensions
of their work.

The productivity score is calculated using the
following formula:

 (1)

where:
 vi denotes each individual metric value being

measured.
 wi represents the weight factor associated with

each metric.
 N is the normalization factor, which in our case is

the number of team members avail-able for the
sprint duration. The normalization ensures that
the productivity index is not adversely affected by
team availability.

Assigning weights to each variable enhances the
flexibility of the productivity calculator, al-lowing it
to be tailored to the specific needs and priorities of
different teams. This adaptability is crucial, as not all
software development teams operate under the same
objectives or constraints. By assigning variable
weights, teams can focus on metrics that are most
relevant to their unique workflows and goals.

For instance, a research-oriented team, whose primary
focus is exploring new technologies or solving
complex problems, may place higher importance on
the completion of Spike tickets within a sprint. Spike
tasks often involve significant uncertainty and require
deep investigation, which may not immediately yield
visible results but are critical for long-term
innovation. By increasing the weight of this metric,
the team can better reflect their productivity in terms
of exploratory work and knowledge acquisition,
rather than just deliverables.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD69393 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 518

Conversely, a delivery-focused team, where the
emphasis is on rapidly deploying features and
ensuring a continuous flow of value to end users,
might prioritize deployment metrics such as
deployment frequency and lead time for changes.
These metrics directly measure how quickly and
efficiently code is delivered to production, reflecting
the team’s ability to maintain a stable and effective
deployment pipeline. By adjusting the weight toward
these metrics, the calculator becomes a more accurate
representation of the team’s operational performance
and delivery efficiency.

This customizable approach allows teams to align
their productivity assessment with their specific
mission, whether that involves innovation, stability,
speed, or any other strategic objective. The ability to
fine-tune the calculator’s metrics ensures that it
remains relevant across a wide variety of team
structures, fostering meaningful insights and
promoting improvements that are aligned with each
team’s goals.

IV.1. Agile Practices

Agile practices focus on iterative development,
collaboration, and adaptability. Metrics in this
category measure how effectively the team plans and
executes work during a sprint. For in-stance, tracking
the number of story points started and completed
provides insight into the team’s capacity planning and
execution efficiency. Currently, Agile methodologies
are among the most effective and widely adopted
approaches for measuring productivity in the
industry.

The following variables are measured within Agile
practices:
 Story Points Completed: The total number of

story points completed in an Agile sprint. This
metric reflects the team’s capacity and
throughput.

 Number of Blocked Tickets: The number of
tickets that are blocked during an Ag-ile sprint.
This variable acknowledges the work that
engineers have invested in tickets before they
became blocked. Often, engineering teams
expend effort on a task until it is blocked, but this
work is not counted in Story Points Completed
since the ticket is not completed. By including
this variable, we recognize the effort contributed
toward blocked tickets. However, a higher
number of blocked tickets may indicate
impediments affecting productivity.

 Number of Spikes Executed: The number of
spike tasks (research or exploration tasks)
executed during the sprint. Spikes often involve

uncertainty and can cause context switching.
Teams can assign weight to this metric based on
their goals, particularly if innovation or research
is a priority.

 Priority Tickets/Bugs Undertaken Mid-Sprint:
The number of high-priority tasks ad-dressed that
were introduced after sprint planning. This
variable acknowledges the disruption caused and
the context switching required by unexpected
work, as well as the team’s adaptability in
handling these tasks.

 Cycle Time: The average time taken to complete
a task from start to finish. A shorter cycle time
indicates a more efficient workflow.

IV.2. Code Contributions

This category evaluates the team’s coding activities,
emphasizing the importance of regular and
manageable code changes. Metrics include the
number of commits and pull requests (PRs) opened,
which encourage practices such as frequent commits
and smaller, more focused PRs.
 Number of Commits: The total number of

commits made during the sprint. This metric
directly correlates with the volume of changes the
team is producing. Encouraging smaller, frequent
commits aligns with software engineering best
practices and facilitates easier code reviews and
integrations.

 Number of Pull Requests (PRs) Opened: The
number of PRs opened by the team during the
sprint. Smaller, more frequent PRs are easier to
review and integrate, reducing bottlenecks in the
development process.

 Build Success Rate: The percentage of builds
that succeed without errors. A high build success
rate indicates stable code and effective integration
practices.

IV.3. Code Quality

Code quality metrics assess the maintainability and
reliability of the codebase. They consider factors such
as code coverage, unit test quality, and the
introduction of new security vulnerabilities.
 Code Coverage: The percentage of code covered

by automated tests. Higher code coverage can
lead to more reliable code but may not fully
capture test quality. With each sprint, we can
measure the change in total code coverage; the
team can be incentivized or penalized based on
how the code coverage has changed during the
given period.

 Unit Test Quality: A qualitative assessment of
unit tests, possibly measured by mutation testing

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD69393 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 519

or code review. A unit test quality score goes
beyond code coverage and measures how
effectively the unit tests uncover potential issues.
Measuring test quality is complex; future
iterations may include this metric.

 New Security Vulnerabilities Introduced: The
number of new security vulnerabilities introduced
during the sprint. Introducing vulnerabilities
hampers productivity, as additional work is
required to address them; hence, this metric
should have a negative weight.

IV.4. Review Activities

Review activities measure the team’s engagement in
the code review process, which is crucial for
knowledge sharing and maintaining code quality.
Metrics include the number of PR reviews conducted,
comments left on PRs, and PRs merged. Engaging in
review activities helps teams ensure code quality and
fosters collaboration by identifying potential issues
early and promoting best practices across the team.

 Number of PR Reviews: The number of PRs
reviewed by team members. This metric
encourages collaborative code quality
improvement.

 Number of Comments Left: The number of
comments made during code reviews. This metric
highlights engagement in the review process;
however, excessive comments may not always be
beneficial.

 Number of PRs Merged: The total number of
PRs merged during the sprint. This reflects the
team’s throughput in integrating changes.

 PR Review Comments and Requests for

Changes: The number of comments and change
requests made during PR reviews. While
constructive feedback is valuable, frequent
change requests may indicate issues with initial
submissions; thus, this metric may have a
negative weight.

 PR Time in Review: The average time PRs
spend in the review process. Extended review
times can clog the workflow and block
subsequent PRs awaiting merge.

IV.5. QA Efforts

Quality Assurance (QA) efforts focus on testing and
verifying that the software meets the re-quired
standards before release. Metrics in this category
include the number of issues logged and the number
of features tested. A proactive approach to QA helps
in delivering a reliable product and reduces post-
release incidents.

 Number of Issues Logged: The number of issues
or bugs identified and logged during the sprint.
Identifying issues early can save time and
resources; however, a high number of issues may
reflect underlying quality problems.

 Number of Features Tested: The number of
features fully tested during the sprint. Com-
prehensive testing ensures reliability and
customer satisfaction.

IV.6. Deployment Metrics

Deployment metrics provide insight into the team’s
efficiency in delivering code changes to production.
Although some of these metrics are challenging to
automate, they are essential indicators of operational
performance. Metrics such as deployment frequency
and lead time for changes are considered. For
example, if the team deploys code to production twice
during a sprint, it indicates a healthy deployment
pipeline and the team’s ability to deliver value
continuously. Shorter lead times for changes suggest
efficient processes, though measuring this may
require additional tools or automation.

 Deployment Frequency: How often code is
deployed to production. Frequent deployments
can indicate a healthy, agile process.

 Lead Time for Changes: The time it takes for a
commit to reach production. Shorter lead times
suggest an efficient pipeline; this metric may have
a negative weight to penalize high lead times.

 Change Failure Rate: The percentage of
deployments causing failures in production. A
high failure rate may indicate quality issues;
tracking this metric can be challenging. This
metric should have a negative weight.

 Mean Time to Recovery (MTTR): The average
time taken to recover from production failures.
Shorter MTTR is desirable; automating
measurement can be a challenge.

IV.7. Normalization Factor

Team size fluctuations from sprint to sprint can
significantly affect the assessment of the productivity
score. To mitigate this, we introduced a normalization
factor. Normalization allows for fair assessment
regardless of team size or other contributing factors.
In our experiments, we used the team size as the
normalization factor. To account for team size, the
total productivity score is divided by the number of
team members available during the sprint.

V. APPLICATION EXAMPLE

For internal use, we created a JIRA plugin that
implements the Engineering Productivity Calculator
as described above. The idea was to seamlessly

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD69393 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 520

integrate into existing development practices without
introducing another tool for logging work.

V.1. Integrations

 We connected the productivity calculator to
development tools like GitHub and JIRA to
automatically gather metrics such as Agile
Practices, Code Contributions, and Review
Activities.

 We plan to integrate the productivity calculator
with the CI/CD pipeline to gather metrics like
code coverage, unit test quality, and
vulnerabilities.

 We also intend to integrate the tool with QA
systems and production-facing systems that
collect DORA metrics.

The following are the different weightings we used
for one of our innovation teams:

Table 1: Metric Weightings for an Innovation

Team

Metrics Weight

Jira Points Completed
Blocked Tickets
Spikes Executed
Priority Tickets/Bugs Undertaken
Mid-Sprint
Cycle Time

1
0.25
0.5

0.25

1

Number of Commits 0.05
Number of Pull Requests 0.5
Build Success Rate 0.1
Code Coverage 0.1
Unit Test Quality 0.1
Security Vulnerabilities Introduced -0.2
Number of PR Reviews 0.1
Number of PR Comments 0.05
Number of PRs Merged 0.1
Number of Changes Requested -0.1
Total PR Review Time -0.01
Number of Issues Logged 1
Number of Features Tested 1
Deployment Frequency 0.5
Lead Time to Change -0.1
Change Failure Rate -0.1
Mean Time to Recover (MTTR) -0.1

We tested the tool with seven different teams over a
period of seven sprints, and the results are shown in
Figure 2.

V.2. Insights Discovered

 We observed a significant dip around the fourth
sprint cycle. Upon investigation, we realized that
it was a week with many holidays and vacations.
This showed that the normalization factor we
initially used did not account for variations in
team availability. We subsequently proposed a

new normalization factor, as described in Section
VI.2.

 We discovered various insights and correlations
between different metrics. For some teams, we
noticed that the PR Review Time was consistently
high. Upon closer analysis, we found that the PR

Review Time was inversely correlated with the
Number of Commits and Number of Pull

Requests. This reinforces the idea that larger PRs
and bigger commits are harder to review.
Breaking them down into smaller units could
significantly reduce the PR Review Time.

Figure 2: Productivity graph from an

experiment with seven different teams over

seven sprints.

Figure 3: Inverse correlation between the

number of PRs and PR Review Time.

 As seen in Figure 2, over the period of seven
sprints, we observed trends in productivity that
corresponded to changes in team practices,
confirming the usefulness of the productivity
calculator in tracking and improving team
performance.

V.3. Benefits

 Holistic View: Considers multiple facets of
development, not just code output.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD69393 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 521

 Customization: Weightings can be adjusted to
align with team priorities.

 Continuous Improvement: Identifies areas
where the team excels or needs improvement.

V.4. Limitations

 Measurement Challenges: Some metrics are
difficult to automate or quantify accurately.

 Overemphasis on Numbers: Risk of focusing on
metrics over meaningful work.

 Context Ignored: Does not account for external
factors affecting productivity.

VI. FUTURE WORK

VI.1. Expanded Integrations

We plan to expand the calculator’s integrations to
include QA systems and DORA metrics collection
systems. Integrating with QA systems will allow us to
automatically gather metrics related to quality
assurance efforts, such as test coverage and defect
rates. Incorporating DORA metrics, which include
deployment frequency, lead time for changes, change
failure rate, and mean time to recovery, will provide
deeper insights into the team’s DevOps performance.

Additionally, we aim to enhance the assessment of
unit test quality by integrating advanced testing tools
that can evaluate test effectiveness through techniques
like mutation testing.

VI.2. Improved Normalization Factor

We recognize that the initial normalization factor,
based solely on team size, may not adequately
account for variations in team availability due to
holidays, vacations, or part-time team members. We
propose exploring more sophisticated normalization
factors, such as the total team working days (i.e., the
sum of the number of working days each team
member was available during the sprint). This
approach would account for variations in team
availability and provide a more accurate
normalization of the productivity score.

VI.3. Application Across Business Verticals

We plan to adapt the productivity calculator for use
across different business verticals within the
organization. By customizing the weightings and
metrics to align with the specific goals and processes
of various teams, we can extend the applicability of
the calculator beyond software development teams to
other departments such as marketing, operations, or
sales. This cross-functional approach could foster a
unified framework for productivity assessment
throughout the organization.

VII. CONCLUSION

Measuring developer productivity is inherently
complex, and no single metric can capture all aspects
of a team’s performance. The proposed productivity
calculator provides a balanced assessment by
considering a range of activities and their impacts
across various dimensions of software development.
By using this tool as a guide rather than a strict
evaluation metric, teams can foster a culture of
continuous improvement and collaboration. The
calculator encourages teams to reflect on their
processes, identify areas for enhancement, and align
their efforts with their specific goals and priorities.

ACKNOWLEDGEMENT

We would like to thank the Newscorp Engineering
team for their contributions and feedback in refining
the productivity calculator.

DISCLAIMER

The analysis and conclusions contained in this paper
represent my personal views and do not necessarily
reflect the official policies or opinions of NewsCorp.

REFERENCES

[1] Turing, “How to Measure Developer
Productivity,” 2023. [Online]. Available:
https://www.turing.com/resources/how-to-
measure-developer-productivity

[2] GitHub, “Quantifying GitHub Copilot’s Impact
on Developer Productivity and Happiness,”
2023. [Online]. Available:
https://github.blog/research-quantifying-github-
copilots-impact-on-developer-productivity

[3] G. H., “Measuring Developer Productivity,”
The Pragmatic Engineer, 2023. [Online].
Available:
https://newsletter.pragmaticengineer.com/p/
measuring-developer-productivity

[4] GitLab, “DevOps Reports,” 2023. [Online].
Available: https://about.gitlab. com/developer-
survey/previous/2023/#download

[5] Forbes Technology Council, “How To Measure
Developer Productivity In The Age Of AI,”
2024. [Online]. Available:
https://www.forbes.com/councils/forbestechcou
ncil/2024/02/02/how-to-measure-developer-
productivity-in-the-age-of-ai/

[6] GitLab, “CXO Survey Reports,” 2024.
[Online]. Available:
https://about.gitlab.com/press/releases/2024-06-
25-gitlab-survey-reveals-tension-around-ai-
security-and-devel

