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ABSTRACT 

This paper presents a novel approach to simulating the Agile 
software development process using a multi-agent system based on 
large language models (LLMs). The system autonomously handles a 
complete software development pipeline, from user story creation 
and task planning to code generation, review, and pull request 
creation. Through collaboration among specialized agents, each 
performing a distinct role in the Agile lifecycle, the system 
demonstrates the ability to autonomously complete low to medium-
complexity software tasks with minimal human intervention. We 
evaluate the system’s performance across various tasks and provide 
insights into its limitations and future potential in augmenting real-
world software development teams. 
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I. INTRODUCTION 

The rapid advancement of large language models 
(LLMs) has paved the way for significant 
breakthroughs in natural language processing, 
reasoning, and code generation [1, 2]. Initially 
designed to assist in natural language understanding 
tasks, recent developments have enabled LLMs to be 
applied to more complex and structured workflows, 
including software development [3]. 

Agile software development is an iterative and 
flexible methodology that emphasizes adaptive 
planning, evolutionary development, and continuous 
improvement. Automating portions of the Agile 
process could significantly enhance productivity, 
particularly in handling low to medium-complexity 
tasks where repetitive actions, such as writing 
boilerplate code or conducting reviews, can be 
streamlined [4]. 

However, most current tools, such as GitHub Copilot, 
provide code suggestions rather than handling a 
complete development cycle. In contrast, our system 
simulates an entire Agile team using multi-agent 
LLMs, autonomously creating user stories, planning  

 
tasks, generating code, reviewing it, and submitting 
pull requests. This paper focuses on the design, 
implementation, and evaluation of this system, 
demonstrating its ability to reduce human intervention 
in software development. 

1.1. Motivation and Challenges 

The motivation behind automating Agile workflows 
stems from the increasing demand for rapid software 
delivery, driven by the growing complexity of modern 
software projects and the competitive pressures faced 
by development teams to deliver features faster and 
with higher quality [5]. Traditional software 
development approaches often encounter bottlenecks 
in scalability, resource management, and consistency, 
particularly as projects become more intricate. 

Automating these workflows presents significant 
challenges due to the nuanced, context-dependent 
nature of many Agile tasks [6]. Translating natural 
language user stories into actionable tasks demands a 
deep understanding of both the project’s technical 
requirements and its broader business context. 
Similarly, tasks such as code review require 
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evaluating generated code against existing 
architectural patterns, style guides, and performance 
considerations, which cannot be easily reduced to 
rule-based automation [7]. 

To address these challenges, we leverage a multi-agent 
system where each agent specializes in a different 
phase of the software development process—such as 
user story creation, task planning, code generation, 
review, and iteration [9, 10]. This specialization 
allows the system to handle complex, context-driven 
decisions more effectively than any single tool or 
model. 

II. RELATED WORK 

2.1. LLM-Based Autonomous Agents 

The use of LLMs in autonomous agents has been 
widely explored across various domains, ranging from 
virtual assistants that handle natural language 
interactions to sophisticated problem-solving 
frameworks used in areas such as robotics, logistics, 
and decision-making systems [8]. Virtual assistants 
like Alexa and Google Assistant have demonstrated 
the ability of LLMs to interpret human commands and 
provide relevant responses. 

More complex systems such as AutoGPT [9] and 
MetaGPT [10] have showcased the potential of 
leveraging multiple LLMs working collaboratively. 
These systems distribute tasks among specialized 
agents, enabling them to tackle multi-step processes 
that require coordination, logical reasoning, and 
contextual understanding. 

Techniques like Chain-of-Thought prompting [11] and 
multiple thought chains [6] have been proposed to 
improve the reasoning capabilities of LLMs, which are 
essential in complex decision-making tasks. 
Additionally, methods such as LLM-Debate [12] aim 
to enhance the reasoning of LLMs through debate 
mechanisms, potentially leading to more accurate and 
robust outcomes. 

2.2. Software Automation Tools 

Advanced automation tools in software development, 
such as GitHub Copilot, SourceGraph Cody, and 
TabNine, have transformed how developers interact 
with code by offering real-time suggestions, 
autocompletion, and context-aware snippets [3]. 
These tools leverage cutting-edge large language 
models to assist in code generation, significantly 
reducing the time spent on writing repetitive code. 

However, despite their usefulness, these tools are 
inherently limited in scope. While they excel at 
generating small fragments of code, such as functions 
or boilerplate templates, they cannot address the 
broader aspects of the software development lifecycle 
[7]. They do not provide capabilities for higher-level 
tasks such as user story creation, task planning, 
detailed code review, or the integration of generated 
code into the larger architecture of a project. 

III. SYSTEM ARCHITECTURE 

Our system is composed of multiple specialized 
agents, each responsible for a distinct phase in the 
software development lifecycle. This multi-agent 
architecture mirrors the roles and responsibilities 
found in a typical Agile team, where tasks such as 
user story creation, task planning, code generation, 
and code review are distributed among different 
individuals. By assigning these roles to autonomous 
agents, we create a robust, scalable system that can 
handle the complexities of software development with 
minimal human intervention [4]. 

Each agent is designed to function independently 
while interacting with other agents in a structured 
manner to ensure smooth transitions between 
development stages. The modular design enhances 
efficiency and allows for independent improvement 
and updates of individual agents without disrupting 
the overall workflow. Figure 1 provides an overview 
of this agent-based system architecture. 

 
Figure 1: System architecture for the multi-agent LLM system automating Agile software development 

tasks. 
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3.1. Workflow Overview 

The workflow begins with a high-level task definition provided by a project manager or developer. This task is 
parsed into a user story by the User Story Creation Agent. Subsequent agents, such as the Planning Agent, Code 

Generation Agent, and Code Review Agent, collaborate to complete the task. The process culminates in the 
submission of a pull request for human review. 

 
Figure 2: Development workflow of the multi-agent system. 

Each agent operates independently but passes context to the next agent in the pipeline. For example, the code 
generated by the Code Generation Agent is reviewed by the Code Review Agent, which checks it against project 
standards and suggests improvements. 

IV. AGENT DESCRIPTIONS AND 

IMPLEMENTATION 

The detailed prompt designs for each agent are 
provided in Appendix C. 

4.1. User Story Creation Agent 

The User Story Creation Agent is designed to translate 
high-level task definitions into structured, actionable 
user stories that can be directly consumed by other 
agents in the development pipeline. Leveraging 
expertise in the specified domain and programming 
language, the agent analyzes the issue or task 
description provided by the user, along with any 
additional instructions or guidelines. 

The agent follows a rigorous process to ensure the 
creation of user stories that are comprehensive and 
aligned with the project’s goals. The system prompt 
emphasizes multiple key instructions for each task: 

Analysis: Carefully examine the task or issue, 
breaking it down into smaller components and 
providing a step-by-step explanation for the solution. 

4.1.1. Clarity and Precision: Produces precise user 
stories, avoids unnecessary complexity, and is 
directly aligned with the given instructions 
and requirements. 

4.1.2. Acceptance Criteria: Provides clear 
acceptance criteria, allowing the development 
team to understand when a task can be 
considered complete. 

The final output is a JSON response that encapsulates 
all the elements of a well-structured user story, 
including detailed acceptance criteria, tasks, and 
relevant context. The agent follows strict adherence to 
formatting, as per the defined prompt template, 
ensuring the response is structured for easy 
interpretation by other agents or developers. 

4.2. Planning Agent 

The Planning Agent translates the user story into a 
detailed, actionable implementation plan that can be 
directly utilized by the development team. This agent 
breaks down the user story into precise steps, analyzes 
the existing codebase, and ensures that all required 
tasks are clearly defined. 

Upon receiving the user story and relevant instructions, 
the Planning Agent reviews the provided task 
description, existing codebase, and any additional 
guidelines. The prompt ensures that the agent takes a 
methodical approach, focusing on key areas such as: 
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 Task Breakdown: Divides the user story into 
smaller, manageable tasks. 

 Codebase Analysis: Examines the existing 
codebase to understand the current system state, 
identifying relevant files or modules that need 
modification or extension. 

 Actionable Steps: Provides detailed and 
actionable steps, specifying file paths, the status of 
each file, and the exact tasks to be completed. 

 Pseudocode and Logic: Uses pseudocode to 
illustrate intended logic or structure, aiding 
developers in understanding the high-level flow 
and implementation details. 

The plan is organized into a strict JSON format, 
making it easy to pass along to other agents or team 
members for further processing. Additionally, the plan 
contains a Thought Log section, where the agent can 
document its thought process or any considerations 
made while developing the plan. 

4.3. Code Generation Agent 

The Code Generation Agent translates the planned 
tasks into fully functional code. Leveraging a 
structured prompt, it generates well-organized, high-
quality code that integrates seamlessly with the 
existing codebase. The agent provides the following 
for each file involved: 
 Full File Path: The exact file location within the 

project. 

 File Status: Indicates whether the file is new, 
being modified, or deleted. 

 File Content: The complete content of the file, 
including necessary imports, function definitions, 
and exports. 

Thought Log: Documents the agent’s thought process 
during code generation. 

4.4. Code Review Agent 

The Code Review Agent ensures that the generated 
code meets the highest standards of quality, 
efficiency, and adherence to best practices. It 
meticulously reviews the generated code by analyzing 
the new code in the context of the existing codebase, 
the user story, and the detailed plan. The agent follows 
a detailed, step-by-step review process, including: 

 Thorough Analysis: Review the user story, 
task description, plan, and codebase to 
understand the context and objectives. 

 Code Quality: Assesses the code for readability, 
clarity, and adherence to coding standards. 

 Best Practices: Check if the code follows best 
practices for the specific programming language. 

 Functionality: Verifies that the code fully 
implements the functionality specified. 

 Integration: Ensures that the new code integrates 
seamlessly with the existing codebase. 

4.5. Pull Request Creation Agent 

The Pull Request Creation Agent generates a well-
structured and comprehensive pull request once all 
code issues have been resolved. It reviews the code 
changes, user story, and implementation plan to ensure 
the PR clearly communicates the purpose of the 
changes, summarizes the modifications, and provides 
necessary context for reviewers. The PR includes all 
necessary files, documentation, and testing results, 
allowing a human reviewer to perform the final review 
before merging the changes into the repository. 

4.6. Implementation Details 

All agents were implemented using Anthropic Claude 
Instant 3.5 running on AWS Bedrock. We also 
experimented with Google’s Gemini 1.5 but did not 
achieve satisfactory results. We plan to evaluate 
OpenAI’s latest models to assess their potential for 
enhancing the code generation process. 

V. RESULTS 

The performance of the system was evaluated across 
several real-world examples, each varying in 
complexity. The tasks ranged from simple 
maintenance operations to medium-complexity 
development tasks, allowing us to observe how well 
the system handles different levels of complexity with 
minimal human intervention. Below, we present a few 
case studies that highlight the system’s effectiveness 
in handling different types of software tasks. 

5.1. Case Study: Maintenance Task—Removing 

an Obsolete Integration 

In this case study, the system was assigned a simple 
maintenance task involving the removal of an obsolete 
integration from the project repository. The task 
required the system to update configuration files by 
removing specific entries and adjusting the changelog 
to reflect the changes. 

The User Story Creation Agent generated a user story 
outlining the need to remove the obsolete integration, 
including acceptance criteria such as ensuring no 
residual code remains and that the application 
functions correctly without it. The Planning Agent 

created a detailed plan specifying which files needed 
modification or deletion, including configuration files 
and documentation. The Code Generation Agent 

executed the plan, removing code references and 
updating relevant files. The Code Review Agent 

reviewed the changes, confirming that all references to 
the integration were removed and that the application 
maintained functionality. Finally, the Pull Request 
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Creation Agent compiled the changes into a pull 
request with a clear summary and detailed description 
of the modifications. 

The pull request was submitted and, after a brief 
human review, merged into the main branch without 
any additional comments or required changes. This 
demonstrates the system’s ability to handle 
straightforward maintenance tasks efficiently and 
accurately, autonomously completing all steps from 
user story creation to pull request submission. 

5.2. Case Study: API Endpoint Creation 

In another case study, the system was tasked with 
creating a new API endpoint for a project. This task 
involved making changes across multiple files, 
including routes, controllers, and con- figuration 
settings. Additionally, the system was required to 
adhere to strict coding guidelines and rules specified 
in the additional instructions provided. 

The User Story Creation Agent crafted a user story 
detailing the requirements of the new endpoint, 
including the expected inputs, outputs, and error 
handling. The Planning Agent analyzed the existing 
codebase to identify where new code should be 
integrated, specifying file paths and outlining the 
necessary changes. The Code Generation Agent wrote 
the code for the new endpoint, ensuring it adhered to 
coding standards, included necessary validation, and 
integrated with existing middleware. The Code 

Review Agent conducted a thorough review, checking 
for compliance with best practices, potential security 
vulnerabilities, and consistency with existing code 
patterns. The Pull Request Creation Agent assembled 
the changes into a pull request, providing a 
comprehensive description and referencing the 
original user story. 

The task was completed with minimal user interaction, 
requiring only a final review by a human developer. 
Minor suggestions were made regarding optimization 
and additional comments for clarity. After addressing 
these comments, the code was merged. This case 
illustrates the system’s capability to handle more 
complex tasks that require integration across multiple 
components of the application while maintaining 
adherence to coding standards and project guidelines. 

5.3. Case Study: Bug Fix—Thread Concurrency 

Issue 

In this case study, the system was assigned a bug fix 
related to a threading concurrency issue that was 
freezing the user interface under certain conditions. 
The system was required to analyze the codebase, 
identify the library and version used for UI design, and 
provide a solution to address the concurrency issue. 

The User Story Creation Agent outlined the problem 
based on the bug report, specifying acceptance criteria 
such as eliminating the UI freeze and ensuring thread 
safety. The Planning Agent examined the codebase to 
identify the root cause, pinpointing the functions 
where threading was mishandled. It was also able to 
correctly identify the UI library in use as well as its 
version. The Code Generation Agent refactored the 
problematic code sections, implementing proper 
thread synchronization mechanisms and updating 
relevant functions. 

The Code Review Agent evaluated the changes for 
potential deadlocks, race conditions, and adherence to 
concurrency best practices. The Pull Request Creation 

Agent created a pull request with detailed explanations 
of the changes and how they resolve the issue. 

The generated pull request was submitted with 
detailed explanations of the changes, and the solution 
was approved without any further comments. The 
human reviewer confirmed that the fix resolved the 
issue without introducing new problems. This 
demonstrates the system’s ability to diagnose and fix 
nontrivial bugs that require knowledge of both the 
codebase and external libraries, handling tasks that 
involve complex debugging, and an understanding of 
concurrent programming concepts. 

5.4. Case Study: Dependency Management and 

Documentation 

In this final case study, the system was tasked with 
migrating the dependency management system of a 
project. For a Python project, the system was required 
to move dependencies from requirements.txt to the 
Poetry based system. 

The User Story Creation Agent produced a user story 
emphasizing the need to update the dependency 
management to the newer system and enhance the 
README with setup instructions. The Planning 

Agent listed all outdated dependencies, planned the 
migration process, and outlined sections to be added 
to the documentation. The Code Generation Agent 

updated dependency files (from requirements.txt to 
pyproject.toml), resolved compatibility issues, 
generated the .lock files, and wrote comprehensive 
setup instructions. The Code Review Agent verified 
that updates did not break existing functionality and 
that the new documentation was clear and accurate. 
The Pull Request Creation Agent compiled the 
updates into a pull request, highlighting key changes 
and including notes on testing performed. 

The system successfully analyzed the project’s 
structure and dependencies, migrated the dependency 
management system, and generated a polished 
README file that included detailed instructions for 
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setting up the project. The human developer was able 
to follow the updated README file and verify the 
results, completing the task. This case study illustrates 
the system’s capability to handle tasks that require not 
only code generation but also broader project 
management tasks such as documentation and 
dependency handling, demonstrating versatility in 
tasks that span both code and documentation updates. 

VI. DISCUSSION 

6.1. Challenges in High-Complexity Tasks 

Although the system performs well on low to 
medium-complexity tasks, it faces limitations when 
handling high-complexity tasks. Such tasks often 
require deeper domain expertise, architectural 
knowledge, or the ability to reason over complex 
systems, which current LLMs may not fully possess 
[5]. 

High-complexity tasks, such as designing a new 
microservices architecture or implementing advanced 
machine learning algorithms, involve abstract thinking 
and decision making that go beyond pattern 
recognition. The system may struggle with: 

 Understanding Complex Requirements: 
Difficulty in interpreting nuanced specifications 
or stakeholder expectations. 

 Architectural Decision Making: Challenges in 
making high-level design choices that consider 
scalability, security, and performance tradeoffs. 

 Integrating with Proprietary Systems: Limited 
ability to interact with closed source systems or 
APIs without prior exposure. 

To address these challenges, future iterations could 
enhance agent capabilities by integrating external 
knowledge bases or domain specific datasets to 
augment the LLM’s understanding [8]. Incorporating 
fine-tuning techniques tailored to specific industries or 
tasks could significantly improve performance [2]. 

6.2. LLMs Cannot Execute or Run Code 

LLMs, while proficient in generating code, do not 
possess the ability to run or test the code they produce. 
This lack of execution capability limits the system’s 
ability to validate the correctness or functionality of 
the code autonomously. The generated code must be 
passed to a human or an external automated testing 
system for validation. 

This limitation impacts the system’s ability to: 

 Catch Runtime Errors: Issues that only manifest 
during execution may go unnoticed. 

 Optimize Performance: Without execution, the 
system cannot profile code to identify bottlenecks. 

 Ensure Security: Dynamic security 

vulnerabilities may not be detected without 
running the code. 

Integrating automated code execution or simulation 
environments may allow the system to perform deeper 
validations, such as running tests and identifying 
performance issues before human intervention is 
required [13]. 

6.3. Future Directions 

While our system already employs retrieval 
augmented generation (RAG) for code context, there 
is significant potential for further enhancing its 
capabilities by integrating more sophisticated context-
handling mechanisms and external data sources. 
Expanding the use of RAG to include broader 
knowledge bases, documentation repositories, or 
domain-specific data could provide the additional 
context needed to solve more complex, specialized 
tasks [8]. 

Additionally, specialized fine-tuning for agents based 
on domain expertise would allow for improved 
performance in specific industries such as healthcare, 
finance, or enterprise software [2]. Techniques like 
Chain-of-Thought prompting [11] and multiple 
thought chains [6] could be employed to enhance the 
reasoning capabilities of the agents. Incorporating 
these methods may enable the agents to handle more 
complex decision-making processes by simulating 
deeper reasoning steps. 

Furthermore, integrating debate mechanisms among 
agents [12] could lead to more accurate and robust 
outcomes. By allowing agents to critique and build 
upon each other’s suggestions, the system may arrive 
at more optimal solutions, particularly for tasks that 
require nuanced judgment or have multiple possible 
approaches. 

Integrating real-time execution environments into the 
system would allow for automated code execution, 
testing, and validation, enhancing autonomy and 
reducing the need for manual oversight [3]. This 
would enable the agents to verify the correctness of 
the generated code, catch runtime errors, and perform 
performance profiling without human intervention. 

Moreover, exploring the incorporation of automated 
code analysis tools, such as static analyzers and linters, 
could improve the quality and security of the generated 
code. Combining these tools with the agents could 
help identify potential bugs or vulnerabilities early in 
the development process, ensuring higher code 
reliability and maintainability. 

Finally, enhancing the agents’ ability to handle high-
complexity tasks remains a significant area for future 
work. This could involve integrating more advanced 
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reasoning capabilities, leveraging domain-specific 
ontologies, or employing hierarchical planning 
methods to break down complex tasks into 
manageable subtasks. By addressing these challenges, 
the system could extend its applicability to a wider 
range of software development scenarios, including 
those that require deep domain knowledge and 
complex architectural decisions. 

VII. CONCLUSION 

We have introduced a multi-agent LLM system 
designed to simulate the Agile software development 
process, automating key tasks such as user story 
creation, task planning, code generation, and pull 
request submission. The system has shown great 
promise in handling low to medium- complexity tasks 
with minimal human intervention, successfully 
streamlining the development workflow. 

While the system excels in these areas, future work 
will focus on expanding its capabilities to tackle more 
complex and domain-specific tasks. Enhancing agent 
collaboration, incorporating domain-specific 
knowledge, and integrating real-time code execution 
environments are among the key improvements that 
will drive the system toward greater autonomy and 
flexibility. With these advancements, the system has 
the potential to further reduce human involvement in 
soft- ware development while maintaining high 
standards of quality and efficiency. 
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