
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 8 Issue 5, Sep-Oct 2024 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD70467 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 892

An Autonomous Multi-Agent LLM

Framework for Agile Software Development

Manish Sanwal, Ishan Deva

Engineering Department, News Corporation, New York, USA

ABSTRACT

This paper presents a novel approach to simulating the Agile
software development process using a multi-agent system based on
large language models (LLMs). The system autonomously handles a
complete software development pipeline, from user story creation
and task planning to code generation, review, and pull request
creation. Through collaboration among specialized agents, each
performing a distinct role in the Agile lifecycle, the system
demonstrates the ability to autonomously complete low to medium-
complexity software tasks with minimal human intervention. We
evaluate the system’s performance across various tasks and provide
insights into its limitations and future potential in augmenting real-
world software development teams.

KEYWORDS: Agile software development, automation, code

generation, large language models, multi-agent systems

How to cite this paper: Manish Sanwal |
Ishan Deva "An Autonomous Multi-
Agent LLM Framework for Agile
Software Development" Published in
International
Journal of Trend in
Scientific Research
and Development
(ijtsrd), ISSN:
2456-6470,
Volume-8 | Issue-5,
October 2024,
pp.892-898, URL:
www.ijtsrd.com/papers/ijtsrd70467.pdf

Copyright © 2024 by author (s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an
Open Access article
distributed under the
terms of the Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

I. INTRODUCTION

The rapid advancement of large language models
(LLMs) has paved the way for significant
breakthroughs in natural language processing,
reasoning, and code generation [1, 2]. Initially
designed to assist in natural language understanding
tasks, recent developments have enabled LLMs to be
applied to more complex and structured workflows,
including software development [3].

Agile software development is an iterative and
flexible methodology that emphasizes adaptive
planning, evolutionary development, and continuous
improvement. Automating portions of the Agile
process could significantly enhance productivity,
particularly in handling low to medium-complexity
tasks where repetitive actions, such as writing
boilerplate code or conducting reviews, can be
streamlined [4].

However, most current tools, such as GitHub Copilot,
provide code suggestions rather than handling a
complete development cycle. In contrast, our system
simulates an entire Agile team using multi-agent
LLMs, autonomously creating user stories, planning

tasks, generating code, reviewing it, and submitting
pull requests. This paper focuses on the design,
implementation, and evaluation of this system,
demonstrating its ability to reduce human intervention
in software development.

1.1. Motivation and Challenges

The motivation behind automating Agile workflows
stems from the increasing demand for rapid software
delivery, driven by the growing complexity of modern
software projects and the competitive pressures faced
by development teams to deliver features faster and
with higher quality [5]. Traditional software
development approaches often encounter bottlenecks
in scalability, resource management, and consistency,
particularly as projects become more intricate.

Automating these workflows presents significant
challenges due to the nuanced, context-dependent
nature of many Agile tasks [6]. Translating natural
language user stories into actionable tasks demands a
deep understanding of both the project’s technical
requirements and its broader business context.
Similarly, tasks such as code review require

IJTSRD70467

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD70467 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 893

evaluating generated code against existing
architectural patterns, style guides, and performance
considerations, which cannot be easily reduced to
rule-based automation [7].

To address these challenges, we leverage a multi-agent
system where each agent specializes in a different
phase of the software development process—such as
user story creation, task planning, code generation,
review, and iteration [9, 10]. This specialization
allows the system to handle complex, context-driven
decisions more effectively than any single tool or
model.

II. RELATED WORK

2.1. LLM-Based Autonomous Agents

The use of LLMs in autonomous agents has been
widely explored across various domains, ranging from
virtual assistants that handle natural language
interactions to sophisticated problem-solving
frameworks used in areas such as robotics, logistics,
and decision-making systems [8]. Virtual assistants
like Alexa and Google Assistant have demonstrated
the ability of LLMs to interpret human commands and
provide relevant responses.

More complex systems such as AutoGPT [9] and
MetaGPT [10] have showcased the potential of
leveraging multiple LLMs working collaboratively.
These systems distribute tasks among specialized
agents, enabling them to tackle multi-step processes
that require coordination, logical reasoning, and
contextual understanding.

Techniques like Chain-of-Thought prompting [11] and
multiple thought chains [6] have been proposed to
improve the reasoning capabilities of LLMs, which are
essential in complex decision-making tasks.
Additionally, methods such as LLM-Debate [12] aim
to enhance the reasoning of LLMs through debate
mechanisms, potentially leading to more accurate and
robust outcomes.

2.2. Software Automation Tools

Advanced automation tools in software development,
such as GitHub Copilot, SourceGraph Cody, and
TabNine, have transformed how developers interact
with code by offering real-time suggestions,
autocompletion, and context-aware snippets [3].
These tools leverage cutting-edge large language
models to assist in code generation, significantly
reducing the time spent on writing repetitive code.

However, despite their usefulness, these tools are
inherently limited in scope. While they excel at
generating small fragments of code, such as functions
or boilerplate templates, they cannot address the
broader aspects of the software development lifecycle
[7]. They do not provide capabilities for higher-level
tasks such as user story creation, task planning,
detailed code review, or the integration of generated
code into the larger architecture of a project.

III. SYSTEM ARCHITECTURE

Our system is composed of multiple specialized
agents, each responsible for a distinct phase in the
software development lifecycle. This multi-agent
architecture mirrors the roles and responsibilities
found in a typical Agile team, where tasks such as
user story creation, task planning, code generation,
and code review are distributed among different
individuals. By assigning these roles to autonomous
agents, we create a robust, scalable system that can
handle the complexities of software development with
minimal human intervention [4].

Each agent is designed to function independently
while interacting with other agents in a structured
manner to ensure smooth transitions between
development stages. The modular design enhances
efficiency and allows for independent improvement
and updates of individual agents without disrupting
the overall workflow. Figure 1 provides an overview
of this agent-based system architecture.

Figure 1: System architecture for the multi-agent LLM system automating Agile software development

tasks.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD70467 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 894

3.1. Workflow Overview

The workflow begins with a high-level task definition provided by a project manager or developer. This task is
parsed into a user story by the User Story Creation Agent. Subsequent agents, such as the Planning Agent, Code

Generation Agent, and Code Review Agent, collaborate to complete the task. The process culminates in the
submission of a pull request for human review.

Figure 2: Development workflow of the multi-agent system.

Each agent operates independently but passes context to the next agent in the pipeline. For example, the code
generated by the Code Generation Agent is reviewed by the Code Review Agent, which checks it against project
standards and suggests improvements.

IV. AGENT DESCRIPTIONS AND

IMPLEMENTATION

The detailed prompt designs for each agent are
provided in Appendix C.

4.1. User Story Creation Agent

The User Story Creation Agent is designed to translate
high-level task definitions into structured, actionable
user stories that can be directly consumed by other
agents in the development pipeline. Leveraging
expertise in the specified domain and programming
language, the agent analyzes the issue or task
description provided by the user, along with any
additional instructions or guidelines.

The agent follows a rigorous process to ensure the
creation of user stories that are comprehensive and
aligned with the project’s goals. The system prompt
emphasizes multiple key instructions for each task:

Analysis: Carefully examine the task or issue,
breaking it down into smaller components and
providing a step-by-step explanation for the solution.

4.1.1. Clarity and Precision: Produces precise user
stories, avoids unnecessary complexity, and is
directly aligned with the given instructions
and requirements.

4.1.2. Acceptance Criteria: Provides clear
acceptance criteria, allowing the development
team to understand when a task can be
considered complete.

The final output is a JSON response that encapsulates
all the elements of a well-structured user story,
including detailed acceptance criteria, tasks, and
relevant context. The agent follows strict adherence to
formatting, as per the defined prompt template,
ensuring the response is structured for easy
interpretation by other agents or developers.

4.2. Planning Agent

The Planning Agent translates the user story into a
detailed, actionable implementation plan that can be
directly utilized by the development team. This agent
breaks down the user story into precise steps, analyzes
the existing codebase, and ensures that all required
tasks are clearly defined.

Upon receiving the user story and relevant instructions,
the Planning Agent reviews the provided task
description, existing codebase, and any additional
guidelines. The prompt ensures that the agent takes a
methodical approach, focusing on key areas such as:

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD70467 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 895

 Task Breakdown: Divides the user story into
smaller, manageable tasks.

 Codebase Analysis: Examines the existing
codebase to understand the current system state,
identifying relevant files or modules that need
modification or extension.

 Actionable Steps: Provides detailed and
actionable steps, specifying file paths, the status of
each file, and the exact tasks to be completed.

 Pseudocode and Logic: Uses pseudocode to
illustrate intended logic or structure, aiding
developers in understanding the high-level flow
and implementation details.

The plan is organized into a strict JSON format,
making it easy to pass along to other agents or team
members for further processing. Additionally, the plan
contains a Thought Log section, where the agent can
document its thought process or any considerations
made while developing the plan.

4.3. Code Generation Agent

The Code Generation Agent translates the planned
tasks into fully functional code. Leveraging a
structured prompt, it generates well-organized, high-
quality code that integrates seamlessly with the
existing codebase. The agent provides the following
for each file involved:
 Full File Path: The exact file location within the

project.

 File Status: Indicates whether the file is new,
being modified, or deleted.

 File Content: The complete content of the file,
including necessary imports, function definitions,
and exports.

Thought Log: Documents the agent’s thought process
during code generation.

4.4. Code Review Agent

The Code Review Agent ensures that the generated
code meets the highest standards of quality,
efficiency, and adherence to best practices. It
meticulously reviews the generated code by analyzing
the new code in the context of the existing codebase,
the user story, and the detailed plan. The agent follows
a detailed, step-by-step review process, including:

 Thorough Analysis: Review the user story,
task description, plan, and codebase to
understand the context and objectives.

 Code Quality: Assesses the code for readability,
clarity, and adherence to coding standards.

 Best Practices: Check if the code follows best
practices for the specific programming language.

 Functionality: Verifies that the code fully
implements the functionality specified.

 Integration: Ensures that the new code integrates
seamlessly with the existing codebase.

4.5. Pull Request Creation Agent

The Pull Request Creation Agent generates a well-
structured and comprehensive pull request once all
code issues have been resolved. It reviews the code
changes, user story, and implementation plan to ensure
the PR clearly communicates the purpose of the
changes, summarizes the modifications, and provides
necessary context for reviewers. The PR includes all
necessary files, documentation, and testing results,
allowing a human reviewer to perform the final review
before merging the changes into the repository.

4.6. Implementation Details

All agents were implemented using Anthropic Claude
Instant 3.5 running on AWS Bedrock. We also
experimented with Google’s Gemini 1.5 but did not
achieve satisfactory results. We plan to evaluate
OpenAI’s latest models to assess their potential for
enhancing the code generation process.

V. RESULTS

The performance of the system was evaluated across
several real-world examples, each varying in
complexity. The tasks ranged from simple
maintenance operations to medium-complexity
development tasks, allowing us to observe how well
the system handles different levels of complexity with
minimal human intervention. Below, we present a few
case studies that highlight the system’s effectiveness
in handling different types of software tasks.

5.1. Case Study: Maintenance Task—Removing

an Obsolete Integration

In this case study, the system was assigned a simple
maintenance task involving the removal of an obsolete
integration from the project repository. The task
required the system to update configuration files by
removing specific entries and adjusting the changelog
to reflect the changes.

The User Story Creation Agent generated a user story
outlining the need to remove the obsolete integration,
including acceptance criteria such as ensuring no
residual code remains and that the application
functions correctly without it. The Planning Agent

created a detailed plan specifying which files needed
modification or deletion, including configuration files
and documentation. The Code Generation Agent

executed the plan, removing code references and
updating relevant files. The Code Review Agent

reviewed the changes, confirming that all references to
the integration were removed and that the application
maintained functionality. Finally, the Pull Request

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD70467 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 896

Creation Agent compiled the changes into a pull
request with a clear summary and detailed description
of the modifications.

The pull request was submitted and, after a brief
human review, merged into the main branch without
any additional comments or required changes. This
demonstrates the system’s ability to handle
straightforward maintenance tasks efficiently and
accurately, autonomously completing all steps from
user story creation to pull request submission.

5.2. Case Study: API Endpoint Creation

In another case study, the system was tasked with
creating a new API endpoint for a project. This task
involved making changes across multiple files,
including routes, controllers, and con- figuration
settings. Additionally, the system was required to
adhere to strict coding guidelines and rules specified
in the additional instructions provided.

The User Story Creation Agent crafted a user story
detailing the requirements of the new endpoint,
including the expected inputs, outputs, and error
handling. The Planning Agent analyzed the existing
codebase to identify where new code should be
integrated, specifying file paths and outlining the
necessary changes. The Code Generation Agent wrote
the code for the new endpoint, ensuring it adhered to
coding standards, included necessary validation, and
integrated with existing middleware. The Code

Review Agent conducted a thorough review, checking
for compliance with best practices, potential security
vulnerabilities, and consistency with existing code
patterns. The Pull Request Creation Agent assembled
the changes into a pull request, providing a
comprehensive description and referencing the
original user story.

The task was completed with minimal user interaction,
requiring only a final review by a human developer.
Minor suggestions were made regarding optimization
and additional comments for clarity. After addressing
these comments, the code was merged. This case
illustrates the system’s capability to handle more
complex tasks that require integration across multiple
components of the application while maintaining
adherence to coding standards and project guidelines.

5.3. Case Study: Bug Fix—Thread Concurrency

Issue

In this case study, the system was assigned a bug fix
related to a threading concurrency issue that was
freezing the user interface under certain conditions.
The system was required to analyze the codebase,
identify the library and version used for UI design, and
provide a solution to address the concurrency issue.

The User Story Creation Agent outlined the problem
based on the bug report, specifying acceptance criteria
such as eliminating the UI freeze and ensuring thread
safety. The Planning Agent examined the codebase to
identify the root cause, pinpointing the functions
where threading was mishandled. It was also able to
correctly identify the UI library in use as well as its
version. The Code Generation Agent refactored the
problematic code sections, implementing proper
thread synchronization mechanisms and updating
relevant functions.

The Code Review Agent evaluated the changes for
potential deadlocks, race conditions, and adherence to
concurrency best practices. The Pull Request Creation

Agent created a pull request with detailed explanations
of the changes and how they resolve the issue.

The generated pull request was submitted with
detailed explanations of the changes, and the solution
was approved without any further comments. The
human reviewer confirmed that the fix resolved the
issue without introducing new problems. This
demonstrates the system’s ability to diagnose and fix
nontrivial bugs that require knowledge of both the
codebase and external libraries, handling tasks that
involve complex debugging, and an understanding of
concurrent programming concepts.

5.4. Case Study: Dependency Management and

Documentation

In this final case study, the system was tasked with
migrating the dependency management system of a
project. For a Python project, the system was required
to move dependencies from requirements.txt to the
Poetry based system.

The User Story Creation Agent produced a user story
emphasizing the need to update the dependency
management to the newer system and enhance the
README with setup instructions. The Planning

Agent listed all outdated dependencies, planned the
migration process, and outlined sections to be added
to the documentation. The Code Generation Agent

updated dependency files (from requirements.txt to
pyproject.toml), resolved compatibility issues,
generated the .lock files, and wrote comprehensive
setup instructions. The Code Review Agent verified
that updates did not break existing functionality and
that the new documentation was clear and accurate.
The Pull Request Creation Agent compiled the
updates into a pull request, highlighting key changes
and including notes on testing performed.

The system successfully analyzed the project’s
structure and dependencies, migrated the dependency
management system, and generated a polished
README file that included detailed instructions for

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD70467 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 897

setting up the project. The human developer was able
to follow the updated README file and verify the
results, completing the task. This case study illustrates
the system’s capability to handle tasks that require not
only code generation but also broader project
management tasks such as documentation and
dependency handling, demonstrating versatility in
tasks that span both code and documentation updates.

VI. DISCUSSION

6.1. Challenges in High-Complexity Tasks

Although the system performs well on low to
medium-complexity tasks, it faces limitations when
handling high-complexity tasks. Such tasks often
require deeper domain expertise, architectural
knowledge, or the ability to reason over complex
systems, which current LLMs may not fully possess
[5].

High-complexity tasks, such as designing a new
microservices architecture or implementing advanced
machine learning algorithms, involve abstract thinking
and decision making that go beyond pattern
recognition. The system may struggle with:

 Understanding Complex Requirements:
Difficulty in interpreting nuanced specifications
or stakeholder expectations.

 Architectural Decision Making: Challenges in
making high-level design choices that consider
scalability, security, and performance tradeoffs.

 Integrating with Proprietary Systems: Limited
ability to interact with closed source systems or
APIs without prior exposure.

To address these challenges, future iterations could
enhance agent capabilities by integrating external
knowledge bases or domain specific datasets to
augment the LLM’s understanding [8]. Incorporating
fine-tuning techniques tailored to specific industries or
tasks could significantly improve performance [2].

6.2. LLMs Cannot Execute or Run Code

LLMs, while proficient in generating code, do not
possess the ability to run or test the code they produce.
This lack of execution capability limits the system’s
ability to validate the correctness or functionality of
the code autonomously. The generated code must be
passed to a human or an external automated testing
system for validation.

This limitation impacts the system’s ability to:

 Catch Runtime Errors: Issues that only manifest
during execution may go unnoticed.

 Optimize Performance: Without execution, the
system cannot profile code to identify bottlenecks.

 Ensure Security: Dynamic security

vulnerabilities may not be detected without
running the code.

Integrating automated code execution or simulation
environments may allow the system to perform deeper
validations, such as running tests and identifying
performance issues before human intervention is
required [13].

6.3. Future Directions

While our system already employs retrieval
augmented generation (RAG) for code context, there
is significant potential for further enhancing its
capabilities by integrating more sophisticated context-
handling mechanisms and external data sources.
Expanding the use of RAG to include broader
knowledge bases, documentation repositories, or
domain-specific data could provide the additional
context needed to solve more complex, specialized
tasks [8].

Additionally, specialized fine-tuning for agents based
on domain expertise would allow for improved
performance in specific industries such as healthcare,
finance, or enterprise software [2]. Techniques like
Chain-of-Thought prompting [11] and multiple
thought chains [6] could be employed to enhance the
reasoning capabilities of the agents. Incorporating
these methods may enable the agents to handle more
complex decision-making processes by simulating
deeper reasoning steps.

Furthermore, integrating debate mechanisms among
agents [12] could lead to more accurate and robust
outcomes. By allowing agents to critique and build
upon each other’s suggestions, the system may arrive
at more optimal solutions, particularly for tasks that
require nuanced judgment or have multiple possible
approaches.

Integrating real-time execution environments into the
system would allow for automated code execution,
testing, and validation, enhancing autonomy and
reducing the need for manual oversight [3]. This
would enable the agents to verify the correctness of
the generated code, catch runtime errors, and perform
performance profiling without human intervention.

Moreover, exploring the incorporation of automated
code analysis tools, such as static analyzers and linters,
could improve the quality and security of the generated
code. Combining these tools with the agents could
help identify potential bugs or vulnerabilities early in
the development process, ensuring higher code
reliability and maintainability.

Finally, enhancing the agents’ ability to handle high-
complexity tasks remains a significant area for future
work. This could involve integrating more advanced

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD70467 | Volume – 8 | Issue – 5 | Sep-Oct 2024 Page 898

reasoning capabilities, leveraging domain-specific
ontologies, or employing hierarchical planning
methods to break down complex tasks into
manageable subtasks. By addressing these challenges,
the system could extend its applicability to a wider
range of software development scenarios, including
those that require deep domain knowledge and
complex architectural decisions.

VII. CONCLUSION

We have introduced a multi-agent LLM system
designed to simulate the Agile software development
process, automating key tasks such as user story
creation, task planning, code generation, and pull
request submission. The system has shown great
promise in handling low to medium- complexity tasks
with minimal human intervention, successfully
streamlining the development workflow.

While the system excels in these areas, future work
will focus on expanding its capabilities to tackle more
complex and domain-specific tasks. Enhancing agent
collaboration, incorporating domain-specific
knowledge, and integrating real-time code execution
environments are among the key improvements that
will drive the system toward greater autonomy and
flexibility. With these advancements, the system has
the potential to further reduce human involvement in
soft- ware development while maintaining high
standards of quality and efficiency.

ACKNOWLEDGEMENTS

We would like to thank the product and engineering
team at News Corp for their support and collaboration
in this research.

VIII. REFERENCES

[1] OpenAI, GPT-4 Technical Report, 2023.

[2] H. Touvron et al., LLaMA: Open and Efficient
Foundation Language Models, 2023.

[3] M. Chen et al., Evaluating Large Language
Models Trained on Code, 2021.

[4] Y. Li et al., Embracing Agile with AI: A Multi-
Agent System for Software Development, 2023.

[5] D. Hendrycks et al., Measuring Massive
Multitask Language Understanding, 2021.

[6] Wang et al., Self-Consistency Improves Chain
of Thought Reasoning in Language Models,
2023.

[7] Liu et al., Improved Code Generation with
LLMs, 2023.

[8] W. Zhao et al., A Survey of Large Language
Models, 2023.

[9] Significant Gravitas, AutoGPT: An Autonomous
GPT-4 Experiment, 2023.

[10] Z. Hong et al., MetaGPT: Meta Programming
for Multi-Agent Collaborative Framework,
2023.

[11] J. Wei et al., Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models,
2022.

[12] Z. Du et al., Improving LLM’s Mathematical
Reasoning via Self-Evaluation and Debate,
2023.

[13] K. Cobbe, V. Kosaraju, M. Bavarian, K. Guu,
Ł. Kaiser, M. Plappert, and A. Vaswani,
“Training verifiers to solve math word
problems

