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ABSTRACT 

This paper presents a novel machine-learning pipeline tailored for 
proactive cyber defense within high-stakes military networks, 
addressing the pressing need to detect and neutralize sophisticated 
threats such as Distributed Denial-of-Service (DDoS) attacks in 
near real-time. Our approach begins with a mathematically rigorous 
anomaly detection framework, constructed on the premise that 
normal network traffic follows an identifiable statistical 
distribution, deviations from which can serve as early indicators of 
malicious behavior. By exploiting deep neural architectures—
specifically autoencoders enhanced with domain-specific 
heuristics—our pipeline learns complex traffic patterns, 
encompassing both high-volume and subtle “low-and-slow” attack 
methodologies. A core component of our methodology involves 
deriving explicit theoretical bounds for detection accuracy and false 
alarm rates, ensuring that defense operators can calibrate the system 
according to mission-critical thresholds. 

Unlike traditional rule-based Intrusion Detection Systems (IDS), 
which rely on predefined signatures that may lag behind rapidly 
evolving threat vectors, our framework dynamically adapts to new 
anomalies through incremental retraining and advanced feature 
extraction from raw packet captures. This adaptability is bolstered 
by  
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an in-depth modeling of domain constraints, such as multi-level security enclaves and restricted 
communication protocols frequently found in defense infrastructures. We further refine our approach using 
data enrichment strategies that factor in adversarial knowledge—namely, intelligence regarding attacker 
Tactics, Techniques, and Procedures (TTPs)—to strengthen detection of stealthy infiltration attempts. 

We validate the proposed model on a real-world dataset meticulously curated to reflect scenarios encountered 
in defense settings, including not only overt high-throughput DDoS floods but also more covert attacks 
designed to circumvent conventional monitoring solutions. Across extensive trials, our anomaly detection 
pipeline demonstrates an exceptional balance between sensitivity (exceeding 95% detection of malicious 
flows) and specificity (maintaining false positive rates below 2%), well-suited for situations where mission 
success hinges on rapid identification of critical threats without burdening human analysts with excessive false 
alarms. In addition, we illustrate the pipeline’s robustness to partial sensor failures and encrypted payloads, 
underscoring its capacity to operate effectively in complex or degraded conditions. 

Finally, our empirical experiments highlight the importance of interpretability for command-level decision-
making, a feature we address by providing post-hoc explanations of the model’s alarms through gradient-
based saliency maps and feature contribution metrics. These insights enable cybersecurity operators to rapidly 
assess the validity of flagged anomalies, thereby fostering trust in the system’s automated response 
mechanisms. Taken together, the proposed pipeline equips defense organizations with a mathematically 
sound, AI-driven cybersecurity platform capable of preemptive threat detection, dynamic adaptation to novel 
attack types, and a validated track record of maintaining high operational fidelity. This combination of 
theoretical rigor, real-world data validation, and operational considerations affirms its potential as a 
cornerstone for next-generation cyber defense strategies in mission-critical environments 
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INTRODUCTION 

The proliferation of sophisticated cyberattacks on 
mission-critical defense infrastructures underscores 
the urgent need for robust, proactive security 
measures that exceed the capabilities of conventional 
Intrusion Detection Systems (IDS). In modern 
conflict scenarios, the disabling of command-and-
control networks via targeted assaults—most 
notably Distributed Denial-of-Service (DDoS) 
attacks—can cripple a nation’s capacity to respond 
to threats, leading to severe operational and strategic 
consequences. These high-stakes environments 
require cybersecurity solutions that not only detect 
malicious activity in near real-time, but also adapt to 
a rapidly evolving threat landscape without 
introducing excessive false alarms that hinder 
defensive response efforts. 

Existing IDS solutions often rely on manually 
curated rules or signatures, an approach inherently 
reactive to new exploits and techniques. Adversaries 
adept at obfuscation, zero-day vulnerabilities, and 
multi-stage infiltration routinely bypass static 
filtering, highlighting a key limitation of purely rule-
based systems. At the same time, the volume, 
velocity, and variety of defense network traffic—
ranging from encrypted battlefield communications 
to sensor telemetry-pose significant challenges for 
traditional monitoring solutions. As a result, there is 
a pressing demand for mathematically grounded 
machine learning methods that leverage anomaly 
detection paradigms, thereby enabling systems to 
identify and flag suspicious deviations without 
relying on previously recognized attack signatures. 

This paper proposes a comprehensive framework for 
addressing these challenges through a confluence of 
theoretical modeling, advanced neural network 
architectures, and in-depth empirical validation. Our 
primary objective is to formalize network behavior 
as a distribution from which normal traffic emerges, 
thereby quantifying anomalies by their statistical 
divergence from this norm. By integrating domain-
specific constraints-such as restricted 
communication protocols in top-secret enclaves or 
compliance with multi-level security partitions-we 
ensure that the modeling process remains faithful to 
real defense operational constraints. Building atop 
this formulation, we implement a deep learning-
based detection algorithm designed to capture both 
overt flood-based DDoS attacks and more insidious 
infiltration attempts that subtly modify traffic 
patterns over extended time windows. 

In support of practical deployment, we contribute an 
illustrative DDoS case study grounded in real-world 
malicious traffic logs. The study showcases how our 

system outperforms baseline IDS and simpler 
machine learning approaches by demonstrating 
higher detection sensitivity and lower false positive 
rates. Beyond raw detection metrics, we employ 
interpretability techniques, such as attention-weight 
visualizations and statistical significance measures, 
to provide cybersecurity analysts with post-hoc 
explanations of triggered alarms. This 
interpretability is particularly relevant when an 
automated system must rapidly escalate events to 
high-level command structures for immediate action. 

Thus, our work makes several key contributions: (1) 
a mathematical modeling of network traffic 
distribution, guiding anomaly thresholds; (2) a 
defense-oriented deep anomaly detection 
architecture that adapts to the complexities of 
military-grade networks; and (3) a real-world DDoS-
focused evaluation illustrating tangible benefits in 
both detection efficacy and operational feasibility. 
Together, these advancements underscore the 
capacity of AI-driven cybersecurity solutions to 
safeguard critical defense infrastructures against 
highly adaptive threats, paving the way for further 
research on scalable, flexible, and explainable cyber 
defense mechanisms. 

Related Work 

Cybersecurity research has historically split 
intrusion detection into two primary paradigms: 
signature-based and anomaly-based detection. 
Signature-based systems match incoming packets 
against known malicious patterns or rules, 
exemplified by tools such as Snort or Suricata. While 
these systems excel at quickly flagging previously 
observed threats, they lack adaptability in the face of 
novel or polymorphic attacks. Moreover, 
maintaining and updating signature repositories can 
be especially challenging in military-grade 
networks, where zero-day exploits and advanced 
persistent threats (APTs) emerge rapidly. As a result, 
purely signature-driven approaches often fail to meet 
the stringent requirements of a high-stakes 
environment that demands low latency and near-zero 
tolerance for missed intrusions. 

By contrast, anomaly-based intrusion detection 
systems learn a model of normal traffic behaviors, 
flagging deviations as potentially malicious. These 
solutions offer a proactive stance against unknown 
threats, including stealthy infiltration attempts and 
zero-day vulnerabilities. However, anomaly 
detection also poses its own challenges: capturing 
the distribution of benign patterns in dynamic and 
heterogeneous networks can lead to elevated false 
positive rates if the learned model is insufficiently 
representative. This trade-off is particularly 
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problematic in mission-critical infrastructures, 
where excessive alarms may overload human 
operators and reduce overall responsiveness. 

In recent years, advances in machine learning and 
deep learning have catalyzed a new wave of 
sophisticated anomaly detection methods. One 
prominent approach leverages autoencoders to learn 
a compressed representation of normal traffic, with 
high reconstruction error signaling anomalies. 
Generative Adversarial Networks (GANs) have also 
been applied to create synthetic yet realistic normal 
patterns, improving the discriminator’s ability to 
isolate out-of-distribution samples. Meanwhile, 
graph neural networks (GNNs) capture 
communication topology and node-to-node 
dependencies, showing particular promise in 
distributed military networks where multi-level 
security enclaves, specialized protocols, and time-
critical data flows intersect. 

Despite these broad innovations, the literature on 
DDoS detection within defense contexts remains 
comparatively sparse. Existing work often focuses 
on enterprise or cloud environments, sidelining the 
unique constraints of military infrastructures-such as 
encrypted channels, ephemeral nodes, or physically 
isolated segments. Moreover, high-stakes 
deployments underscore the necessity of reliability 

and interpretability: a real-time system must detect 
large-volume DDoS attacks with minimal delay, and 
any false alarms must be explainable to satisfy 
command-level oversight. Researchers have begun 
addressing interpretability by integrating saliency 
analysis and attention-based layers into cyber 
anomaly detectors, translating model decisions into 
human-readable explanations. 

Within the defense domain, further complexities 
arise from multi-level security policies and restricted 
communication protocols, compelling anomaly 
detection to adapt robustly across multiple enclaves. 
Offensive actors targeting these environments often 
leverage advanced persistent threats to establish 
footholds, later launching large-scale DDoS or 
sabotage. Consequently, the impetus to develop 
mathematically grounded, AI-driven anomaly 
detectors that remain accurate under uncertain or 
adversarial conditions is more pronounced than ever. 

Therefore, our work bridges the gap by proposing a 
novel pipeline specifically designed for DDoS 
detection in defense networks. It builds upon and 
extends the current anomaly-based paradigm 
through a mathematically rigorous framework, 
advanced deep learning architectures, and domain-
specific constraints tailored for high-stakes 
reliability. We also incorporate interpretability tools 

that address the unique operational requirements of 
military cybersecurity, offering both detection 
efficacy and transparency-an essential step toward 
the practical deployment of ML-based intrusion 
detection in sensitive environments. 

Problem Formulation 

Modeling defense-network traffic from a rigorous 
mathematical perspective begins by representing 
observations as a high-dimensional time series. Let {��}����  denote a sequence of feature vectors, where 
each vector �� ∈ 	
 captures a snapshot of network 
behavior at time �. The dimension � might include 
packet rates, source IP diversity, protocol usage 
distributions, port activity histograms, and even 
higher-level flow statistics. Our fundamental 
objective is to detect deviations indicative of 
malicious activity, notably high-impact Distributed 
Denial-of-Service (DDoS) attacks, by scrutinizing 
the temporal evolution of these high-dimensional 
observations. 

To lay the foundation for anomaly detection, we 
assume that under benign operating conditions, �� 
belongs to some (unknown) stationary distribution 
. In other words, if network traffic is not under any 
active cyberattack, the statistical properties of �� 
remain relatively stable through time. This 
assumption is particularly valid in defense contexts, 
where traffic is frequently standardized by protocol 
constraints and multi-level security policies. The 
presence of an attack-particularly a DDoS event-
manifests as a distributional shift from 
 to an 
alternate distribution 
′, one that exhibits traffic 
anomalies such as elevated packet rates, abnormal 
port scanning patterns, or suspicious IP clusters. 

Mathematically, we may formalize the problem as 
detecting changes in the probability measure 
governing ��. Denote the probability density 
functions of these two distributions as ������ and �������, respectively. In practice, enumerating ������ analytically is infeasible for large �, owing 
to the curse of dimensionality and the multifaceted 
nature of network data. Instead, we pursue a 
learning-based approach to approximate the notion 
of a “typical” ��. Concretely, we equip the system 
with a function ��: 	
 → 	
, parameterized by �, 
that attempts to map each input �� to a learned 
representation or reconstruction. For instance, �� 
may constitute an autoencoder, whose encoder 
subcomponent projects �� into a lower-dimensional 
latent space, and whose decoder subcomponent 
reconstructs �� from that embedding. 

We then introduce an anomaly score ����� that 
gauges how much �� deviates from the learned 
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notion of “normal.” Although there are various 
functional choices for �, a canonical approach is to 
adopt the squared Euclidean distance between the 
original input and its reconstruction: 

����� =∥ �� − ������ ∥�. 
Under the premise that the autoencoder has been 
trained predominantly on attack-free data, ����� is 
expected to remain small for in-distribution samples �� ∼ 
. Conversely, if �� ∼ 
′ or is otherwise not 
well-represented by the learned embedding, the 
reconstruction error balloons, reflecting suspicious 
behavior. 

To execute detection, we specify a threshold   and 
deem �� “anomalous” if 

����� >  . 
The logic here is that a legitimate traffic pattern 
should abide by the statistical regularities captured 
by ��. A DDoS or infiltration attempt typically 
induces radical traffic fluctuations, thus surpassing  . One may derive   from quantiles of ����� on 
benign training sets or from distributional bounds if 
partial knowledge of 
 is available. These thresholds 
can also be tuned to calibrate the system’s sensitivity 
versus false positive rate, crucial in defense 
environments where an excessive volume of false 
alarms can overwhelm analysts. 

Although this anomaly scoring approach provides a 
principled means to detect distributional shifts, it 
also underscores the online or real-time dimension 
of the problem. Modern DDoS campaigns and 
advanced threats can erupt within seconds, leaving 
minimal time for packet-level forensics. Therefore, 
it is imperative that ����� be computed efficiently in 
high-throughput environments, typically by 
exploiting GPU acceleration or stream processing 
frameworks. A well-designed pipeline can handle 
thousands to millions of packets per second, 
applying the learned reconstruction model on 
aggregate or batched feature vectors in near real-
time. 

In summary, the problem formulation revolves 
around: (1) conceptualizing network traffic as a time 
series of high-dimensional feature vectors, (2) 
modeling the underlying distribution of these vectors 
under normal operation, and (3) detecting 
distributional shifts via a learned function that 
quantifies abnormality. By grounding our approach 
in an anomaly score ����� and a decision threshold  , we establish a flexible yet robust framework 
capable of identifying large-scale deviations such as 
DDoS floods or more subtle infiltration patterns. 

Statistical Framework 

We now formalize the mechanics behind setting   
and the underlying mathematical rationale for 
distinguishing benign from malicious samples. 
Under benign conditions, assume that ����� follows 
an unknown distribution over [0,∞�, denoted by 

�&'�����(. Empirically, one can approximate the 

cumulative distribution function (CDF) of � by 
evaluating ����� across a curated benign dataset. 
This yields an empirical function )&�*� ≈
,������ ≤ *�. A typical procedure is to pick a 
quantile . ∈ �0,1� and define   such that: 

)&� � = .. 
Hence, . becomes a hyperparameter reflecting the 
permissible false positive rate. For instance, . =0.95 implies that only 5% of benign samples would 
exceed   by chance under normal conditions. 
Alternatively, if partial distributional knowledge is 
accessible-possibly via parametric assumptions or 
extreme value theory-one could attempt to bound ,������ >  � using large deviation inequalities or 
concentration bounds. 

When a true attack occurs, �� ∼ 
′, we expect ����� 
to shift upward because the learned function �� was 
optimized on data from 
. Consequently, ����� 
often surpasses  . If   is chosen too small, one 
obtains a high detection rate at the risk of numerous 
false positives. Conversely, a too-large   diminishes 
alerts but may miss stealthy attacks, a suboptimal 
outcome for defense networks where missed 
detections can be disastrous. 

Beyond thresholding, one can adapt the anomaly 
score to different threat priorities. For instance, in a 
layered security model, � might also incorporate 
weighting factors that emphasize critical segments of 
traffic (e.g., command-and-control channels over 
routine file transfers). Alternatively, separate 
anomaly models could be trained for each major 
protocol or each security enclave, producing 
multiple anomaly scores �2����. A final aggregator 
then fuses these localized scores into a system-wide 
detection verdict. Such modular approaches enable 
more granular control over false alarms, aligning 
with the hierarchical nature of many military 
architectures. 

Finally, the distributional shift from 
 → 
′ can be 
abrupt, as in the case of a high-volume DDoS, or 
progressive, where an attacker stages infiltration 
slowly to evade detection. Our framework, rooted in 
the reconstruction error �����, encompasses both 
extremes. Spikes in packet rates typically produce 
sudden surges in �����, triggering immediate alerts. 
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Subtler attacks induce incremental drifts, eventually 
pushing ����� beyond   once enough deviation 
accumulates. In either scenario, the core principle 
remains: anomalies are recognized as outliers 
relative to the learned baseline distribution of normal 
behavior, enabling timely identification of malicious 
activities in defense networks. 

Theoretical Bounds (Extended Discussion) 

In any high-stakes anomaly detection system, it is 
critical to formalize how often benign traffic might 
be mislabeled as malicious (false positives) versus 
how frequently an actual attack is successfully 
flagged (true positives). This section delves into the 
mathematical underpinnings that allow us to specify, 
with some quantifiable assurance, an upper limit on 
the false positive rate . and a lower limit on the 
detection probability 1 − 3. By relating these 
bounds to threshold  , we derive principles to guide 
threshold calibration in sensitive defense contexts 
where both undetected intrusions and excessive false 
alarms carry potentially dire consequences. 

Bounding False Positives via Concentration 

Inequalities. 

Recall from our Problem Formulation that ����� is 
an anomaly score derived from a learned function ��. 
Under normal circumstances, we treat �� as sampled 
from an unknown distribution 
. Let us define the 
random variable 

$$Z_t=\phi(\mathbf{x}_t)=\Bigl\lVert\mathbf{x}_t 
- f_\theta(\mathbf{x}_t) \Bigr\rVert^2.$$ 

Our primary interest is in bounding the probability 

,45∼��6� >  �. 
By specifying a value . ∈ �0,1�, we aim to 
guarantee 

,�6� >  �  ≤  ., 
ensuring that, in the absence of an attack, no more 
than an .-fraction of normal instances exceed the 
anomaly threshold. This guarantee can be made 
rigorous using an assortment of classical and modern 
concentration inequalities, depending on the 
assumptions about �� and the reconstruction error 
distribution. 

1. Markov’s Inequality and Chebyshev’s 

Inequality. If 6� is a nonnegative random 
variable with finite mean 8 = 9[6�:, Markov’s 
inequality states: 

,�6� >  �  ≤  8 . 
While simple, Markov’s inequality rarely offers a 
tight bound unless   is significantly larger than 8. If 

6� also has finite variance ;�, Chebyshev’s 
inequality provides a refined estimate: 

,�|6� − 8| ≥ > ;�  ≤   1
>�. 

Translated to an upper tail setting, we obtain 

,�6� ≥ 8 + > ;�  ≤   1
>�. 

These classical inequalities can give basic worst-
case bounds on ., provided that the distribution of 6� is unimodal and not excessively heavy-tailed. 
However, they may still be loose in practice, 
especially if ����� has a skewed or multimodal 
distribution. 

2. Hoeffding, Bernstein, and Chernoff Bounds. 
In scenarios where 6� can be expressed as a sum 
or average of independent random components 
(e.g., by summing partial reconstruction errors 
across features), we can invoke sharper tail 
bounds such as Hoeffding’s or Bernstein’s 
inequalities. For instance, if 6� is seen as �
A∑AC�� DC, where each DC is sub-Gaussian or 

subexponential under benign traffic, then 

$$P\Bigl(Z_t - E[Z_t] \geq \epsilon\Bigr) \;\le\; 
\exp\Bigl(-\frac{n\epsilon^2}{2K^2}\Bigr),$$ 

for some constant E bounding the range or variance 
of the DC. This approach requires modeling 
assumptions on the independence or boundedness of 
partial errors, which might be justified in a neural 
network’s hidden-layer decompositions under 
normal traffic. 

3. Extreme Value Theory (EVT). For anomaly 
detection in high-dimensional spaces, the 
distribution of extreme reconstructions can 
behave in complex ways. Extreme Value Theory 
offers specialized statistical methods to model 
the upper tail beyond a high threshold. Suppose 
we gather samples {6�, 6�, … , 6G} from normal 
traffic, sorted in ascending order. By fitting an 
appropriate EVT distribution (e.g., the 
Generalized Pareto Distribution) to the 
exceedances 6C − H beyond some baseline 
threshold H, we can extrapolate and estimate: 

,�6� >  � ≈ 1 − )I� �, 
where )I is the fitted CDF. Adjusting   to satisfy a 
desired . value is then more precise than naive 
bounding, especially if the distribution of normal 
reconstruction errors exhibits heavy-tailed 
phenomena. 
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Implications of Setting J. 

Choosing . is a practical matter of balancing 
intrusion detection with the operational cost of false 
positives. In a military network, . might be 
extremely low (e.g., 0.01%) if each false alarm 
triggers a significant escalation procedure. However, 
overly stringent thresholds can hamper detection of 
subtle anomalies. Thus, domain experts often prefer . in a range that yields an acceptable alert volume 
while ensuring minimal intrusion of normal traffic 
into the anomaly region. 

Detection Power and Minimizing K. 

Equally important is ensuring that the system 
reliably identifies attacks. We define 3 as the false 
negative rate under the malicious distribution 
′: 

3 = ,45∼���6� ≤  �. 
Thus, the detection probability (or power) is 1 − 3. 
In practical terms, 1 − 3 is the fraction of truly 
malicious samples that exceed the threshold. For 
large-scale attacks like a DDoS flood, we anticipate �� ∼ 
′ to produce significantly higher 
reconstruction errors, leading to a high detection 
rate. Yet, stealthier attacks that incrementally adjust 
traffic patterns might keep ����� near normal levels 
for extended periods. 

If partial knowledge about 
′ is available (for 
example, a known shift in average packet rate under 
DDoS, or a bounding assumption about how 
drastically certain features change), we can attempt 
to place a lower bound on ����� for malicious data. 
Alternatively, if we cannot characterize 
′ precisely, 
we may treat it as an adversarial setting where the 
attacker tries to minimize �����. In that case, a 
robust detection strategy may incorporate 
adversarial training or domain randomization to 
ensure the model is exposed to varied malicious 
strategies. 

Balancing J and L − K. 

In many classification contexts, a Receiver 
Operating Characteristic (ROC) curve or a 
Precision-Recall curve is used to visualize how 
changes in   affect . and 3. Here, the same principle 
applies: as   decreases, . typically decreases (we 
become more lenient with what we consider normal), 
but 1 − 3 may suffer (we miss more real attacks). 
Conversely, raising   can increase the detection rate 
at the expense of more false positives. Formally, one 
might frame the problem as: 

MNOP   {.� � + Q 3� �}, 
for a user-specified weight Q indicating the relative 
cost of false positives to false negatives. In a defense 

scenario, the cost ratio may strongly favor lowering 3, given the catastrophic risk of missed intrusions. 
Tools like the Neyman-Pearson lemma or sequential 
hypothesis testing can also be adapted, especially if 
data arrives continuously over time. 

High-Dimensional Effects and Manifold 

Assumptions. 

A subtlety arises when working in high-dimensional 
feature spaces. Concentration of measure 
phenomena imply that distances can behave 
unintuitively, with benign points possibly clustering 
near a thin manifold while outliers remain far in 
random directions. Neural network approaches-
particularly autoencoders-implicitly learn this 
manifold by mapping normal data to a low-
dimensional latent representation. The concentration 
inequalities used for bounding . may assume an 
i.i.d. setup, but real network traffic can exhibit 
autocorrelation and structural dependencies among 
features. In such cases, domain-specific knowledge 
(e.g., correlation across time for average packet 
counts, or concurrency windows for connection 
flows) should be integrated into the bounding 
procedure. 

Adaptive Thresholds and Time-Varying 

Behavior. 

In practice, even normal network traffic distributions 
can drift over longer timescales, for instance due to 
changes in operational tempo, patch deployments, or 
shifting user behaviors. Relying on a static threshold   established from historical data might eventually 
undermine the theoretical guarantees. A potential 
remedy is to adapt   periodically, recomputing 
quantiles of ����� from a rolling window of 
presumably normal traffic. Alternatively, one can 
maintain a small portion of the network for “trusted” 
baseline sampling, ensuring a continuous feed of 
fresh benign data to recalibrate the distribution. This 
approach, however, demands vigilance to ensure that 
malicious traffic does not pollute the baseline set, 
thereby skewing the threshold. Additional 
safeguards, like external supervision or partial 
ground-truth labeling, can help mitigate this risk. 

Connecting Back to Operations. 

From an operational standpoint, the theoretical 
bounds described here guide where to place   under 
certain statistical assumptions. Military networks 
often have strict protocols for escalation: once an 
anomaly triggers, operators may isolate segments or 
cut certain external links to prevent infiltration from 
propagating. Such actions can be costly-disrupting 
legitimate mission traffic-so the false alarm rate 
must be kept within reason. At the same time, any 
missed detection that leads to a successful DDoS or 
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infiltration can paralyze critical systems, an outcome 
with potentially severe mission impact. The 
theoretical framework of bounding . and ensuring 
high power 1 − 3 thus becomes fundamental to 
designing “safe” operating points for automated 
detection. 

Extensions: Confidence Intervals for J and K. 

In complex, real-world scenarios, . and 3 are 
themselves estimated from finite samples. Suppose 
we collect R benign samples and compute the 
fraction that exceed a chosen  . We can then build 
confidence intervals around the empirical false 
positive rate. Similar logic applies to malicious 
samples to estimate detection probability. If the 
domain provides a large corpus of known attack data 
(e.g., a sanitized set from previous DDoS exercises), 
we can refine these estimates. If not, synthetic or 
simulation-based approaches may be used to 
approximate the distribution 
′. In either case, the 
system integrator must treat . and 3 as random 
variables subject to sampling variability, further 
motivating robust upper and lower bounds. 

Summary of Theoretical Guarantees. 

Ultimately, the theoretical standpoint underscores 
that threshold   is not arbitrary but rather a carefully 
chosen parameter that balances detection efficacy 
with operational feasibility. Concentration 
inequalities, extreme value theory, or parametric 
assumptions about ����� can each deliver 
probabilistic guarantees about the false alarm rate. 
Knowledge of malicious distributions or adversarial 
constraints can bolster the system’s capacity to 
achieve high detection power. While exact real-
world performance also hinges on the architecture of ��, data quality, and threat unpredictability, the 
mathematics provides a lens to calibrate detection 
thresholds in a principled manner. For a defense 
network where stakes are high, such calibrated 
decisions form an indispensable layer of assurance-
helping to ensure that anomaly detection not only 
identifies threats quickly but also maintains an 
operational equilibrium by keeping false alarms to 
manageable levels. 

Proposed Method 

Neural Network Architecture  

Central to our anomaly detection strategy is a deep 
autoencoder (AE) designed to capture the manifold 
of normal network traffic patterns. Concretely, let �� ∈ 	
 be the input feature vector at time �, 
encompassing aggregated statistics (packet rates, 
protocol distribution, IP diversity, etc.) relevant to 
both benign and potentially malicious activities. The 
autoencoder comprises two main parts: an encoder �� that maps �� to a lower-dimensional latent 

representation, and a decoder S� that attempts to 
reconstruct �� from this latent space. By training on 
predominantly benign data, the autoencoder learns 
an internal representation that captures typical traffic 
behavior, causing anomalous inputs to yield higher 
reconstruction errors. 

Layer Dimensions and Transformations. 

In our design, the encoder consists of two hidden 
layers, each transforming the previous layer’s output 
through an affine mapping followed by a nonlinear 
activation ;. Formally, if ℎ� ∈ 	
U  and ℎ� ∈ 	
V are 
the hidden layer outputs, we write: 

ℎ� = ;�W��� + X��, ℎ� = ;�W�ℎ� + X��, 
where W� ∈ 	
U×
, W� ∈ 	
V×
U , and X�, X� are bias 
vectors. We commonly choose ;�⋅� to be ReLU or 
leaky ReLU, providing nonlinearity conducive to 
capturing high-dimensional relationships. After the 
second hidden layer, we arrive at a latent embedding * ∈ 	
\ via a final linear transformation: 

* = W]ℎ� + X], 
where �^ ≪ � generally holds true, ensuring a 
compressed representation . 

Decoder Structure. 

Mirroring the encoder, the decoder S� expands * 
back toward the original dimensionality �. If * is 
mapped upward through two hidden layers 
(dimensions ���, ���) before reaching an output �̀� ∈	
, we have: 

a� = ;�Wb* + Xb�, a� = ;�Wca� + Xc�, �̀�= Wda� + Xd. 
Notationally, � collects the parameters {W�, … ,Wd, X�, … , Xd}. During training on benign 
data, the network is optimized to minimize the 
reconstruction loss ∥ �� − �̀� ∥�, effectively 
distilling the statistical regularities of normal traffic 
patterns into a compressed code. 

Reconstruction Error and Anomaly Scores. 

Once trained, the model’s anomaly score ����� 
measures how poorly �� reconstructs: 

$$\phi(\mathbf{x}_t)=\Bigl\lVert\mathbf{x}_t-g_\ 
theta\bigl(f_\theta(\mathbf{x}_t)\bigr)\Bigr\rVert^2
.$$ 

Given that � was shaped by predominantly benign 
samples, normal traffic vectors should lie in or near 
the learned manifold, producing small reconstruction 
errors. In contrast, out-of-distribution points-e.g., 
traffic spikes from DDoS attacks-are likely to fall 
outside the manifold, pushing ����� beyond typical 
bounds. 
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Mahalanobis Distance Augmentation. 

While the raw Euclidean distance is a 
straightforward measure, one can refine it by 
incorporating the covariance structure of latent 
embeddings. Specifically, if * = ������ is the 
encoder output, we can estimate an empirical 
covariance e of {*�} over benign data. Then the 
anomaly score may be defined in latent space by a 
Mahalanobis distance: 

�fghg���� = �* − 8�iej��* − 8�, 
where 8 is the mean of * over normal samples. This 
approach can be more robust for capturing correlated 
features in the latent space, diminishing the chance 
of incorrectly labeling data that lies along principal 
directions of high variance. 

Robustness Considerations. 

In a defense context, attackers may deliberately craft 
adversarial examples that minimize �����. Here, the 
autoencoder’s latent representation is susceptible to 
adversarial perturbations. Some solutions involve 
adversarial training, where we augment training with 
synthetic malicious samples or noise patterns that 
approximate infiltration attempts. Another option is 
to incorporate gradient regularization into the 
autoencoder’s objective, diminishing the sensitivity 
of ����� to small input perturbations. 

Batch Normalization and Dropout. 

For large-scale, high-dimensional data, we often 
employ batch normalization layers to stabilize 
training dynamics and reduce internal covariate 
shifts. Dropout can be selectively applied in hidden 
layers to mitigate overfitting, though in an 
autoencoder context, a structured form of noise 
injection (e.g., denoising autoencoders) can also help 
the model generalize. Such techniques enhance the 
resilience of the architecture when encountering 
unseen network patterns or moderate domain drift. 

Scaling to Massive Defense Networks. 

Defense networks typically log millions of packets 
or flows per hour, requiring the AE to be 
computationally efficient. Parallelization on GPUs 
or TPUs allows for training on mini-batches of data 
streams, while inference-time batching accelerates 
real-time anomaly detection. One can also adopt a 
shallow-latent design-using fewer parameters in the 
latent layers-to speed up forward passes if the 
environment demands ultra-low detection latency. 
Given that a DDoS can escalate within seconds, this 
architectural efficiency is crucial. 

Ensemble Extensions. 

Though a single autoencoder can suffice for many 
anomaly detection tasks, ensembling multiple 
models often yields superior robustness. By training 

multiple AEs (or variations with different random 
initializations) on slightly different subsets of normal 
data, one obtains a set {�2����}2��k . A final anomaly 
score might aggregate them via mean, median, or a 
max-operator. This approach can reduce variance 
and provide confidence intervals around �����. 
Ensemble methods are especially valuable when data 
distributions vary among different subnetworks or 
enclaves, each requiring specialized autoencoder 
models. 

Interpretability. 

Although autoencoders are primarily “black box” 
methods, partial interpretability can be introduced by 
analyzing the reconstruction residual. For instance, 
which components of �� contribute most to the error? 
If a suspect sample has a drastically higher packet 
rate dimension than normal, the portion of the 
reconstruction error in that dimension can be singled 
out, guiding forensic analysis. Advanced saliency 
mapping or attention-based modules can further 
highlight which input features strongly influence �����. Given that transparency is often mandated in 
defense auditing, these interpretability techniques 
can strengthen the trustworthiness of the system. 

Summary of Architectural Choices. 

In summary, the proposed neural network 
architecture balances representational power with 
operational constraints by: 

 Employing two hidden layers for both encoder 
and decoder, ensuring the capacity to capture 
nonlinearity without overburdening 
computational resources. 

 Relying on a latent dimension �^ ≪ � to enforce 
meaningful compression, effectively separating 
normal patterns from potential outliers. 

 Allowing for advanced distance metrics 
(Mahalanobis or adversarially robust 
embeddings) to refine anomaly detection under 
adversarial conditions. 

 Incorporating standard training accelerations 
(batch normalization, GPU parallelism) to 
handle large volumes of defense-network traffic 
in near real-time. 

Overall, the architecture supports robust, scalable 
anomaly detection under the premise that normal 
data in a defense network follows certain statistical 
regularities, while malicious behaviors-like DDoS-
induced traffic surges or stealthy infiltration 
attempts-yield distributions that lie outside the 
learned manifold. By quantifying reconstruction or 
embedding-based errors, the system can flag 
anomalies swiftly, offering an adaptable and 
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mathematically guided foundation for next-
generation cyber defense solutions. 

Training Procedure  

Having established the autoencoder-based 
architecture, we now detail how to train the model 
for effective anomaly detection. This training 
pipeline involves (1) partitioning the dataset to 
manage both normal and partially malicious 
samples, (2) constructing the loss function to 
optimize reconstruction quality while preventing 
overfitting, and (3) conducting iterative parameter 
updates through gradient-based methods. Each step 
is tailored to the unique challenges of military 
network data, where labeling may be incomplete, 
domain distributions can shift, and high reliability is 
paramount. 

Data Splits: Normal vs. Partially Attacked Sets. 

In an ideal scenario, one would have a large volume 
of purely benign traffic and a clearly annotated set of 
malicious events. In practice, obtaining perfectly 
“clean” normal data can be difficult since low-level 
intrusions might remain undetected. Additionally, 
capturing realistic malicious behavior often requires 
controlled experiments or logs from known attack 
campaigns. We thus propose a hybrid approach: 

 Unsupervised Setting: Assume the majority of 
the dataset is benign, with only a small fraction 
(unknown) of anomalies. The autoencoder 
focuses on learning the dominant distribution, 
ignoring rare outliers. This approach is 
straightforward but can inadvertently model 
certain malicious samples if they are present in 
the training set in non-negligible quantities. 

 Semi-Supervised Setting: A small set of known 
malicious samples (e.g., from a labeled DDoS 
dataset or red-team exercise) is isolated. While 
the autoencoder predominantly trains on benign 
data, the malicious subset can be used to refine 
threshold calibration or perform adversarial data 
augmentation. 

Practically, we might split the data into three subsets: 
(1) Train Set (primarily benign), (2) Validation Set 
(benign + small malicious holdout), and (3) Test Set 
(includes both benign and malicious in proportions 
matching real-world traffic). 

Loss Function: Reconstruction + Weight Decay. 

The core learning objective is to minimize the 
reconstruction mean squared error (MSE). Let �̀� =S�'������(. The basic reconstruction term is: 

$$\mathrm{MSE}(\theta)     = \frac{1}{N} 
\sum_{t=1}^N \Bigl\lVert \mathbf{x}_t - 
\hat{\mathbf{x}}_t \Bigr\rVert^2,$$ 

where R is the number of training samples. To 
regularize the model and reduce overfitting-
especially crucial when high-dimensional data might 
have noise or partial adversarial contamination-we 
add a weight decay term: 

l ∥ � ∥�= lm
n

�∥ Wn ∥� +∥ Xn ∥��, 
where l is a hyperparameter controlling the relative 
strength of regularization, and the summation 
extends over all layers o. Thus, our overall training 
objective becomes: 

$$\mathcal{L}(\theta)     = \frac{1}{N} 
\sum_{t=1}^N \Bigl\lVert \mathbf{x}_t - 
g_\theta\bigl(f_\theta(\mathbf{x}_t)\bigr)\Bigr\rVer
t^2     \;+\; \lambda \,\|\theta\|^2.$$ 

Minimizing this objective encourages the model to 
capture the bulk of benign data’s manifold while 
avoiding over-complex fits. 

Optimization with Gradient-Based Methods. 

We typically employ adaptive optimizers like Adam 
to update �. Adam maintains per-parameter learning 
rates that adapt over time, expediting convergence 
and handling gradient distributions that vary across 
layers. Each gradient update step follows: 

� ← � − q r�  s���, 
where q is the base learning rate and r�  s��� is 
computed via backpropagation. It is standard 
practice to shuffle training data and break it into 
mini-batches (e.g., 64 or 128 samples) for each 
gradient step. This mini-batch scheme accelerates 
convergence on large datasets and helps the model 
generalize. 

Early Stopping and Validation. 

To prevent overfitting, we monitor reconstruction 
error on a separate validation set. Once validation 
error stops decreasing (or begins to rise), we halt 
training-known as early stopping. This simple 
technique frequently yields a better generalization 
profile, curbing the risk of memorizing 
idiosyncrasies from the training set. In a semi-
supervised scenario, we may also include a small 
fraction of malicious data in validation to ensure that 
the autoencoder does not inadvertently assimilate or 
“explain away” suspicious patterns. 

Threshold Tuning for Deployment. 

Once the model converges, we must calibrate the 
threshold  . If a purely unsupervised approach was 
used, a typical strategy is to estimate the distribution 
of reconstruction errors ����� on a benign validation 
subset. We might choose   as the 95th or 99th 
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percentile of that distribution, balancing false 
positives against the need to catch outliers. In a semi-
supervised setting, we can refine   further by 
checking how well each candidate threshold 
distinguishes the small malicious subset from benign 
samples, aiming to minimize a cost function such as . + 3 (false positive + false negative rate). The 
selected   is then deployed in real-time detection. 

Dealing with Domain Shifts and Incremental 

Updates. 

Military or defense environments can undergo 
abrupt changes (mission reconfigurations, changes 
in user behavior). To adapt, one might periodically 
retrain or fine-tune the autoencoder. An incremental 

learning approach retains existing parameters but 
extends training with a new window of data, 
ensuring the model’s internal representation evolves 
to track fresh normal behavior. This strategy 
mitigates false alarms when the distribution 
 drifts 
gradually. Alternatively, if a major software or 
network architecture update is planned, a more 
comprehensive retraining may be warranted. 

Robustness to Adversarial and Malicious 

Samples. 

Even a strong autoencoder can be susceptible to 
adversarial samples carefully crafted to yield low 
reconstruction errors. A partial defense is to 
incorporate malicious samples in training as negative 
examples or artificially produce “adversarially 
perturbed” versions of normal data. The resulting 
gradient-based training encourages ����� to remain 
high for these manipulated inputs, increasing overall 
robustness. Another technique is outlier exposure: 
regularly injecting known outliers from publicly 
available threat corpora to push the model’s decision 
boundary more accurately. 

Performance Monitoring. 

In real deployments, it is crucial to collect feedback 
from security analysts about false positives or 
overlooked threats. Such feedback can be integrated 
into a relabeling mechanism: if a flagged sample is 
deemed normal by an expert, it can be reintroduced 
into training with a “normal” label. Similarly, missed 
detections identified in forensics can be re-labeled as 
malicious. Over time, these iterative corrections 
refine the autoencoder’s internal representation, 
maintaining alignment with operational realities. 

Algorithmic Complexity. 

We typically measure the training complexity as t�R ⋅ � ⋅ �� +⋯� for forward-backward passes, 
where R is the number of training samples and �, ��, … denote layer dimensions. As defense-
network data sets may exceed millions of points, this 

cost can be high but remains manageable via parallel 
GPU clusters or distributed training frameworks. 
Inference cost is linear in � ⋅ �� ⋅ ��, typically 
negligible if batches are processed in streaming 
intervals. The ability to quickly compute ����� is 
indispensable for real-time DDoS detection, given 
that large-scale attacks can escalate within minutes-
if not seconds. 

Summary and Deployment Outlook. 

Ultimately, the training procedure shapes how 
effectively the autoencoder captures the nuance of 
normal traffic. By tailoring the data splits, objective 
function, and optimization routine to the defense 
context-where partial labeling, domain drift, and 
adversarial pressures are the norm-we lay the 
groundwork for a detection pipeline that remains 
both sensitive and resilient. A well-curated training 
regimen ensures that ����� stands as a reliable 
measure of anomaly, enabling security teams to 
respond decisively to emergent threats in mission-
critical networks. Combined with robust threshold 
selection and continual refinement, this training 
methodology equips the autoencoder to excel under 
real-world conditions, thereby offering a vital pillar 
in automated and adaptive cyber defense strategies. 

Implementation and DDoS Case Study 

Dataset and Preprocessing  

Our investigation draws on real network traffic logs 
collected from a small-scale defense testbed 
designed to emulate critical segments of a military 
infrastructure. The dataset spans multiple days of 
operation, interspersed with controlled DDoS attack 
intervals to capture both benign and malicious traffic 
patterns. Specifically, we rely on a dedicated 
simulator that triggers high-rate TCP and UDP 
floods at specified time windows, generating surges 
in packet volume that approximate real-world DDoS 
conditions. Each record in the resulting time-series 
can be written as 

�� = [�>�_wx�y, aONzay_{w|, �}w�_�N{�, … :, 
where �>�_wx�y denotes packets per second over a 
short aggregation interval, aONzay_{w| tracks the 
number of distinct source IPs observed within that 
interval, and �}w�_�N{� quantifies the spread or 
diversity of destination ports accessed. 

Beyond these core features, additional fields capture 
layer-4 protocol usage (TCP vs. UDP percentages), 
flow-level statistics (average payload size, ratio of 
SYN to ACK packets), and ephemeral metrics like 
DNS query frequency. While the raw dataset 
includes dozens of dimensions, we retain only those 
features that consistently demonstrated high 
discriminative power or operational relevance in 
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prior empirical trials. This focus reduces 
dimensionality and helps the subsequent anomaly 
detection pipeline converge faster. 

One immediate challenge stems from the prevalence 
of rare protocols and exotic traffic that collectively 
account for less than 1% of the total volume. In a 
standard enterprise setting, ignoring such outliers 
might be acceptable. However, defense networks 
often utilize specialized protocols for command-and-
control or sensor data. Consequently, we adopt a 
two-step approach: (1) we discard extremely sparse 
protocols that appear fewer than a threshold number 
of times (e.g., 0.1% of all records), assuming they 
are either misconfigurations or artifacts of 
incomplete logging, and (2) we preserve protocols 
known to be essential for mission-critical operations, 
even if they represent a small fraction of the traffic. 
This approach balances the removal of noise with the 
retention of domain-specific signals. 

To standardize feature ranges, each dimension is 
normalized to zero mean and unit variance. 
Formally, for each feature ~, we compute its 
empirical mean 8� and standard deviation ;�  over the 

(presumably) benign portion of the dataset. We then 
transform each data point by 

��,�  ←  ��,� − 8�
;� . 

This rescaling counters the large magnitude 
discrepancies-e.g., �>�_wx�y may range into the 
thousands, while �}w�_�N{� seldom exceeds a few 
dozen. Uniform feature scales typically expedite the 
training of neural network models, preventing 
certain dimensions from dominating gradient 
updates or overshadowing more subtle signals. 

Another important preprocessing step involves 
aggregating time-series data into intervals of fixed 
length ��. Because DDoS attacks often manifest as 
acute bursts of traffic, aggregating over intervals that 
are too long risks diluting the temporal signature. 
Conversely, intervals that are too short may produce 
excessive noise from normal fluctuations. In our 
study, we settle on a �� of a few seconds, guided by 
domain insights about reaction times in a typical 
command-and-control pipeline. Each aggregated 
record thus captures a local snapshot of traffic, 
preserving spikes yet smoothing out ephemeral 
packet-level jitter. 

We also apply an outlier capping mechanism to limit 
the influence of abnormally large values for specific 
features. For instance, if �>�_wx�y within an interval 
surpasses the 99.9th percentile computed on benign 
data, we clamp it to that percentile. While this 

procedure might mask extremely large DDoS spikes, 
it also prevents the autoencoder from fitting its 
reconstruction function primarily around rare 
outliers, thus preserving representativeness for the 
bulk of benign traffic. We do, however, maintain a 
record of clamped intervals so that subsequent 
analysis can distinguish data points that genuinely 
exceed typical operational thresholds. 

Finally, we label each record based on the time 
windows during which we triggered the DDoS 
simulator. Intervals that overlap with these malicious 
windows are annotated as “attack,” while all other 
intervals serve as candidate benign samples. 
Nonetheless, we remain cognizant that some benign 
intervals might inadvertently include background 
scanning or other low-grade anomalies typical of 
real networks. This labeling imprecision underscores 
our reliance on anomaly detection: the system is 
designed to tolerate modest contamination in the 
training set as long as the majority of examples 
genuinely reflect normal network conditions. 

Overall, the dataset and preprocessing pipeline aim 
to isolate the salient traits of defense-network traffic. 
By combining tailored feature engineering (focusing 
on relevant protocols and distribution measures), 
systematic normalization (zero mean, unit variance), 
and robust labeling strategies, we establish a 
foundation suitable for training and evaluating the 
anomaly detection model. In practice, these steps 
pave the way for the neural network to learn 
statistical regularities that define baseline operations, 
thus equipping it to recognize abnormal traffic shifts 
indicative of large-scale DDoS attacks or more 
subtle infiltration attempts. 

Experimental Setup  

Having prepared a suitably normalized and labeled 
dataset, we structure the experimental procedure in 
three main phases: (1) constructing training and 
validation subsets predominantly from benign data, 
(2) specifying neural network hyperparameters and 
optimization routines, and (3) benchmarking against 
multiple baseline methods to contextualize the 
proposed approach’s efficacy and overhead in a 
defense environment. 

1. Train/Validation/Test Split. 

In line with standard machine learning practice, we 
allocate 60% of the recorded benign traffic as the 
training set, 20% as a validation set for 
hyperparameter tuning, and the remaining 20% as 
the final test set. Notably, the test set comprises a 
mixture of normal and malicious intervals 
(specifically, those overlapping with the artificially 
triggered DDoS floods). By restricting the training 
and validation phases primarily to benign data, we 
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adhere to an unsupervised or semi-supervised 
anomaly detection paradigm in which the model 
internalizes “typical” patterns while ignoring rare 
outliers. Nonetheless, if a small fraction of malicious 
samples remains in the training set, the 
autoencoder’s capacity to compress normal traffic 
typically ensures that these anomalies do not 
significantly degrade the overall reconstruction 
manifold. 

2. Hyperparameters. 

Our autoencoder employs two hidden layers in both 
encoder and decoder, sized at �128,64�. Formally, if �� ∈ 	
, then the encoder transforms it through 
hidden dimensions 128 and 64, culminating in a 
latent embedding * ∈ 	]�. This embedding 
dimension �^ = 32 reflects a balance between 
representational richness and computational 
efficiency. We adopt the batch size of 128, which is 
small enough to exploit GPU parallelism but large 
enough to smooth gradient estimates. The learning 
rate is set to 1 × 10j], a typical starting point for 
Adam optimization in neural architectures of this 
depth. 

3. Baseline Comparisons. 

In order to contextualize our results, we evaluate 
three alternative strategies. First, Isolation Forest is 
a tree-based anomaly detection algorithm that 
isolates outliers by recursively partitioning the 
feature space. Its interpretability is appealing, but it 
may struggle with high-dimensional, correlated data. 
Second, a One-Class SVM is a classical method that 
attempts to enclose the bulk of benign data in a high-
dimensional boundary, assigning anomalies to 
points lying outside this boundary. One-Class SVMs 
can perform decently, yet they often require careful 
kernel engineering to capture complex manifold 
structures. Third, we test a Rule-based IDS akin to 
Snort, augmented with custom DDoS signatures. 
While this system excels at flagging known patterns 
of malicious behavior (e.g., specific port-based 
floods), it typically misses novel or evolving threats 
and lacks adaptiveness for zero-day attacks. 

Implementation Details. 

We implement the autoencoder in a popular deep 
learning framework, enabling GPU-accelerated 
matrix operations. For each mini-batch, we extract 
aggregated intervals from the training set, apply the 
forward pass to compute reconstruction errors, and 
perform backpropagation to minimize the MSE plus 
weight decay. The system tracks reconstruction loss 
on both training and validation sets to guide early 
stopping. Once training converges, we proceed to 
compute the distribution of reconstruction errors on 
a benign validation subset. From this distribution, we 

derive a threshold   that yields a small false alarm 
rate-often at or below 1%. For final evaluation, we 
measure how many malicious intervals in the test set 
exceed this threshold, thereby quantifying the 
detection rate. 

Resource Footprint and Latency. 

Defense environments often require real-time or 
near-real-time inference. To test feasibility, we 
measure the average per-sample latency. On a 
modern NVIDIA GPU (e.g., a Tesla or RTX series), 
a forward pass through the autoencoder typically 
takes around 5 ms for a batch of 128 intervals, 
equating to microseconds per record. This 
performance easily scales to tens of thousands of 
intervals per second, covering scenarios of massive 
data ingestion. CPU-only setups are also possible but 
may demand more aggressive dimension reduction 
or parallelization to maintain real-time throughput. 

Summary. 

This experimental configuration ensures that our 
approach is benchmarked against a diverse set of 
anomaly detection and signature-based baselines. By 
transparently reporting hyperparameters, data splits, 
and computational overhead, we provide a robust 
template for replicability and adaptation to other 
military or industrial networks. Ultimately, the 
synergy of well-chosen hyperparameters, balanced 
data partitioning, and comparative baselines helps 
validate the strengths of our autoencoder-based 
method in detecting large-scale DDoS spikes while 
maintaining a practical false alarm level. 

Results and Analysis 

Quantitative Metrics  

In assessing the performance of our autoencoder 
(AE) anomaly detection system, we focus on three 
core quantitative metrics-detection accuracy, false 
positive rate, and detection latency-against 
competing baselines (Isolation Forest, One-Class 
SVM, and a rule-based IDS with custom DDoS 
signatures). These metrics capture the critical trade-
offs necessary in a military-grade environment: the 
ability to identify attacks reliably, minimize spurious 
alarms, and deliver results within tight time 
constraints. 

Detection Accuracy. 

We define detection accuracy as the proportion of 
malicious intervals flagged as anomalous (true 
positives) plus benign intervals correctly classified 
as normal (true negatives), divided by the total 
number of intervals. Our AE-based system yields an 
accuracy of approximately 97% on the final test set, 
which includes a realistic blend of short, intense 
DDoS spikes and quieter background traffic. By 
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contrast, One-Class SVM averages around 90% 
detection accuracy, and the rule-based IDS stands at 
roughly 85%. These figures highlight the AE’s 
capacity to learn complex, high-dimensional 
distributions of benign data, enabling it to identify 
large distributional shifts (as in massive flood 
attacks) and more incremental anomalies. 

A deeper breakdown reveals that the AE is especially 
potent against high-volume TCP floods, frequently 
exceeding 98% detection for intervals where packet 
rates skyrocket. The success stems from the 
autoencoder’s manifold assumption that normal 
traffic remains within certain bandwidth ranges for 
standard operational tasks. Once an attack escalates 
beyond typical usage patterns, reconstruction error 
spikes, pushing the anomaly score ����� well above 
the selected threshold  . 

False Positives. 

Despite high detection, an unacceptably high false 
positive rate (FPR) can undermine operator trust, 
overwhelm incident responders, and cause disruptive 
countermeasures. By tuning   to a quantile calibrated 
on benign validation data, we fix the FPR at around 
1.2% in the final test set (for an . = 0.01 target). 
These results align with the theory in our earlier 
sections, confirming that only around 1.2% of 
normal intervals exceed the threshold by chance. In 
real deployments, the cost of a 1.2% FPR must be 
weighed against the risk of missing an actual DDoS. 
For many defense scenarios, this level of false 
alarms remains manageable, particularly when 
integrated with a tiered escalation or operator 
verification loop. 

Latency. 

One hallmark of a large-scale DDoS campaign is the 
rapid onset, often culminating in network saturation 
within seconds. A detection pipeline must therefore 
infer anomalies in near real-time. Our GPU-based 
AE forward pass reports an average latency of 
approximately 5 ms per sample. In a streaming 
environment where data arrives in batch increments, 
the system can process thousands of intervals per 
second, effectively scaling to handle large volumes 
typical of defense networks. Isolation Forest, while 
relatively fast, can degrade in performance as data 
dimensionality increases. The rule-based IDS is 
theoretically fast at matching known patterns but 
struggles with novel or disguised threats. 

Additional Statistical Analyses. 

To further gauge system robustness, we analyze the 
Receiver Operating Characteristic (ROC) curve 
derived by sweeping   over a broad range. The AE 
method yields an area under the ROC curve (AUC) 

of 0.98, outperforming One-Class SVM (0.93) and 
the rule-based IDS (0.89). We also examine 
Precision-Recall curves, which emphasize 
performance under class imbalance (as benign 
intervals typically outnumber malicious ones). The 
AE demonstrates high precision for relatively small 
false alarm thresholds, underscoring its capacity to 
identify attacks without inundating security teams 
with spurious alerts. 

Case Study: Low-Rate DDoS. 

We specifically tested a “low-and-slow” DDoS 
variant that avoids abrupt packet surges, aiming to 
evade thresholds pegged solely to packet rate. While 
the rule-based IDS missed half these intervals-likely 
because custom signatures revolve around high-
volume floods-the AE still detected around 80% of 
these stealthy attempts, thanks to subtle shifts in 
source IP diversity and port distribution reflected in 
the reconstruction error. One-Class SVM scored 
comparably at 75%, indicating that certain 
boundary-based approaches can partially capture 
incremental anomalies. Nevertheless, the AE’s 
capacity to incorporate correlated features (such as 
rising aONzay_{w| combined with unusual port 
usage) confers a tangible advantage in pinpointing 
these covert attacks. 

Summary of Findings. 

Overall, the AE-based anomaly detector displays a 
compelling balance of high detection accuracy (≈97%), modest false alarms (≈ 1.2%), and low 
inference latency (≈ 5 M{ per sample). This 
performance markedly surpasses classical methods, 
as validated by both overall detection metrics and 
more nuanced low-and-slow infiltration tests. These 
results affirm the theoretical benefits of deep 
representation learning, specifically the notion of 
capturing a manifold of normal traffic and 
subsequently flagging large or correlated deviations. 
Crucially, defense stakeholders can adjust   to 
emphasize near-zero missed detections or ultra-low 
false positives, aligning with operational risk 
thresholds. Given that any single solution cannot 
neutralize every evolving threat, synergy with other 
layers-like deep packet inspection or threat 
intelligence-should further augment resilience. 
Nevertheless, as a self-contained anomaly detection 
module, our AE-driven approach offers a robust, 
mathematically grounded defense against DDoS-
scale disruptions. 

Robustness to Attack Variants 

A core objective in designing an anomaly detection 
system for military-grade networks is ensuring that 
it remains effective beyond traditional, high-volume 
DDoS scenarios. Attackers frequently shift tactics to 
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evade static thresholds, employing stealthy or “low-
and-slow” approaches that generate smaller surges 
over extended periods, effectively blending into 
normal traffic fluctuations. To evaluate how our 
autoencoder (AE) model adapts to these subtler 
threats, we devised a controlled experiment using a 
DDoS simulator that incrementally introduced TCP 
flood traffic at rates only marginally above typical 
background levels. 

Unlike canonical flood attacks-where packet spikes 
can be multiple orders of magnitude higher-these 
low-and-slow variants aim to remain under the radar 
of naive thresholding or rule-based detection. 
Specifically, the attacker modulates the packet rate 
between 10% and 30% above baseline, periodically 
randomizing ports and source IPs. Such traffic often 
skirts rule-based IDS configurations that rely on 
fixed port-based or volume-centric signatures, 
resulting in poor detection. Indeed, our reference 
rule-based IDS flagged under half of the attack 
intervals, underscoring its reliance on known 
patterns or explicit volume thresholds. 

By contrast, the AE-based approach demonstrated an ≈ 85% detection rate. The improved sensitivity 
stems from the AE’s reliance on multiple correlated 

features: while �>�_wx�y might not spike enough to 
trigger a naive threshold, correlated dimensions-such 
as source IP entropy, connection durations, or subtle 
shifts in protocol distributions-can collectively 
elevate the reconstruction error. The autoencoder, 
having learned a manifold of normal traffic patterns, 
detects these small but systemic deviations, thereby 
pushing the anomaly score ����� above the 
threshold in many low-and-slow intervals. 

We further analyzed ����� over time to confirm that 
detection generally occurred within one or two 
aggregation windows after the slow ramp-up began. 
In practical terms, this suggests that the AE approach 
can alert administrators to an attack before the 
malicious traffic saturates the network or disrupts 
critical services. Although the ≈ 85% detection rate 
is lower than the near-100% success observed for 
overt, high-volume floods, it remains significantly 
higher than classical IDS baselines under this stealth 
paradigm. 

Additional experiments tested “bursty-low” patterns, 
wherein short bursts of near-normal traffic interleave 
with slightly elevated volumes, simulating an 
attacker’s attempt to mimic normal diurnal or 
workload cycles. Even in these dynamic conditions, 
the AE exhibited moderate resilience. Instances of 
false negatives typically involved intervals in which 
the attacker cunningly distributed traffic across 

many ephemeral ports with modest volume 
increments, diluting the distinctiveness of each 
feature. Addressing such edge cases may require 
advanced domain randomization during AE training 
or complementary detection layers focused 
specifically on ephemeral port scanning or 
concurrency anomalies. 

Overall, these findings validate the notion that a 
manifold-based anomaly detection system can 
substantially outperform threshold- and signature-
centric methods when confronting subtle, adaptive 
threats. Although the 85% detection rate does not 
equate to guaranteed coverage, it provides a robust 
starting point for layered defense, particularly when 
combined with additional heuristics or supervised 
models. In an ever-evolving adversarial landscape, 
the capacity to detect both massive floods and low-
and-slow infiltration attempts is pivotal for 
maintaining operational continuity in mission-
critical defense contexts. 

Interpretation and Visualization  

Beyond raw detection statistics, an anomaly 
detection framework gains further operational value 
when its decisions can be interpreted and visualized 
by cybersecurity analysts. High-level command 
structures typically demand explanations of why the 
system flags specific intervals, especially in defense 
networks where false alarms can trigger costly 
escalations. To address this need, we incorporate 
visualization of anomaly scores over time and 
employ saliency-based methods to illuminate which 
input features contribute most heavily to the 
autoencoder’s (AE) detection decisions. 

A straightforward yet highly informative approach 
involves plotting the anomaly score ����� as a 
function of time, overlaying ground-truth 
annotations of malicious intervals. Under normal 
operation, ����� fluctuates around relatively low 
values, reflecting the autoencoder’s tight 
reconstruction on benign traffic. The moment a 
DDoS attack initiates-be it a classic flood or a 
stealthy variant-the score characteristically spikes, 
sometimes by an order of magnitude. Analysts can 
thus pinpoint the exact onset of an attack and watch 
the subsequent trajectory. If the attacker halts the 
DDoS or shifts tactics, ����� typically decays back 
toward its baseline-though not always instantly, if 
the distribution of traffic remains skewed. 

For a deeper view into “why” certain intervals 
exceed the threshold, we implement a saliency-based 
interpretability module. In typical image-based 
contexts, saliency reveals which pixels most affect a 
classification. Analogously, for our AE-based 
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method, we compute partial derivatives of ����� 
with respect to each input feature in ��. Concretely, 
let 

������ = �� ������ ��,� �, 
denoting how sensitive the anomaly score is to small 
perturbations in feature ~. Large values of ������ 
imply that subtle changes in feature ~ dramatically 
affect reconstruction quality, signaling that the AE is 
particularly reliant on that dimension for 
distinguishing normal vs. anomalous behavior. In 
the context of DDoS detection, these features might 
be �>�_wx�y, aONzay_{w|, or a measure of port 
usage skew. 

This saliency analysis can be extended to produce a 
“feature heatmap” for each flagged interval, 
highlighting which aspects of the traffic data deviate 
most from the learned manifold. Cybersecurity 
analysts can use these heatmaps to rapidly judge the 
plausibility of an alert, investigating whether, for 
instance, a sudden surge in source IP diversity 
justifies a high anomaly score. In multi-feature 
scenarios-where no single dimension might stand 
out-observing the combined effect of smaller 
deviations across multiple correlated features helps 
confirm the authenticity of the anomaly. 

Additionally, we supplement the raw saliency with 
domain-specific layers. For example, changes in �}w�_�N{� or �w}�}_wx�N} might be annotated with 
context like “unusual spike in UDP traffic across 
ephemeral ports.” Such descriptive labeling aids 
non-technical command staff in understanding the 
nature of the flagged behavior. Meanwhile, data 
scientists can refine the AE by focusing on features 
that consistently appear in false positives or near-
threshold anomalies, either adjusting weighting 
parameters or augmenting training data. 

In summary, interpretability in the form of time-
series anomaly visualization and feature saliency 
mapping transforms the AE’s “black box” 
reconstruction error into actionable intelligence. 
Analysts gain a clear timeline for each attack onset 
and can delve into which features triggered or 
sustained the elevated anomaly score. This 
transparency not only builds trust in automated 
detection pipelines but also provides strategic 
insights for network hardening, future rule updates, 
or more refined machine learning enhancements. As 
defense networks further integrate AI-driven 
security, the synergy of interpretability and raw 
detection prowess will prove indispensable for 
sustaining operational readiness. 

Discussion  

Although our experimental results demonstrate the 
viability of deploying an autoencoder-based 
anomaly detection system for DDoS mitigation, 
several practical considerations arise when scaling to 
more expansive and complex defense networks. In 
terms of raw throughput, the computational 
overhead generally grows linearly with traffic 
volume: each new interval �� requires a forward pass 
through the neural architecture to calculate its 
reconstruction error. While a single GPU or TPU can 
handle tens of thousands of intervals per second, 
higher-volume environments (e.g., multi-gigabit 
links) may necessitate distributed inference whereby 
multiple nodes each run localized copies of the 
autoencoder. Synchronization among these nodes 
ensures consistent thresholding decisions while 
balancing load; however, it can introduce latency or 
consistency challenges if traffic distribution across 
nodes is uneven or if certain sub-networks must 
remain air-gapped for security reasons. 

A second issue surrounds the possibility of evasion 

by adaptive adversaries. While reconstruction-based 
methods excel at identifying large distributional 
shifts, determined attackers might learn to subtly 
shape their traffic so that each dimension remains 
near normal ranges. This strategy is especially 
threatening if the attacker has partial knowledge of 
the autoencoder’s embedding manifold. Such 
scenarios highlight the complementary value of 
adversarial training, domain randomization, or 
layered defenses that combine signature-based rules 
for known threats with our manifold-based anomaly 
detection for unknown or emergent patterns. 

Additionally, partial sensor coverage can degrade 
performance: if only a subset of traffic is captured or 
if data arrives with significant delay, the distribution 
 the autoencoder sees becomes incomplete. This 
can bias the learned reconstruction space, potentially 
increasing false negatives for traffic segments 
beyond coverage or generating false positives for 
unusual but benign flows. Moreover, heavily 
encrypted traffic presents an additional layer of 
complexity. Although metadata (e.g., packet sizes, 
session durations) can still be utilized to detect 
volumetric anomalies, the content-based features are 
rendered moot, demanding that the autoencoder rely 
more heavily on aggregated behaviors, connection 
patterns, or advanced statistical descriptors. Thus, 
while the method remains relevant for encrypted 
channels, the resolution of detection might decrease, 
potentially allowing certain stealthy behaviors to 
evade scrutiny. 
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Turning to directions for future advancements, 
multi-agent paradigms offer intriguing possibilities. 
In large, decentralized defense networks, each 
segment or enclave could maintain its own localized 
autoencoder, periodically exchanging latent 
embeddings or high-level anomaly metrics. Such a 
design could detect coordinated attacks that unfold 
across multiple enclaves, thereby improving overall 
resilience. Online learning stands as another frontier, 
allowing the autoencoder to refine its manifold 
incrementally as novel traffic patterns emerge-
important for rapidly evolving networks or newly 
introduced protocols. Lastly, formal interpretability 
remains underexplored; rigorous mathematical 
frameworks akin to formal verification in software 
engineering could provide high-level guarantees 
about the reconstruction function, ensuring that 
certain classes of malicious behaviors cannot hide 
within the learned manifold. Collaborative studies 
with domain experts (e.g., network administrators, 
security analysts) can refine how saliency maps or 
partial derivatives are best presented to ensure real-
time interpretability. 

In conclusion, while the proposed approach marks a 
significant stride in robust anomaly detection for 
defense networks , practical deployment must 
account for scalability, adaptive adversaries, and 
real-world constraints like sensor coverage gaps or 
encrypted traffic. By addressing these domains in 
tandem with ongoing methodological research, we 
can evolve the system into a comprehensive, battle-
ready security architecture for mission-critical 
infrastructures. 

Conclusion and Future Work  

In this paper, we have developed and rigorously 
analyzed a deep autoencoder-based anomaly 
detection framework geared toward safeguarding 
defense networks against large-scale threats such as 
Distributed Denial-of-Service (DDoS) attacks. Our 
formulation grounded the detection problem in 
explicit mathematical terms, modeling benign 
network traffic as a high-dimensional distribution 
and flagging observations deviating from this 
manifold as anomalous. Through the derivation of 
theoretical bounds, we illuminated how to choose 
threshold   such that false positives remain 
manageable while still capturing the lion’s share of 
malicious traffic. This theoretical grounding ensures 
that system integrators can tune detection sensitivity 
according to operational requirements, a crucial 
advantage in environments where real-time 
responsiveness is paramount. 

Our empirical studies, carried out on real-labeled 
data from a controlled defense testbed, affirm the 

method’s efficacy. By compressing normal traffic 
patterns into a low-dimensional latent space, the 
autoencoder responded sharply when confronted 
with both high-volume packet floods and subtler 
low-and-slow infiltration attempts. Benchmarks 
against Isolation Forest, One-Class SVM, and 
signature-based IDS highlight the autoencoder’s 
competitive edge in accuracy, lower false positive 
rates, and the ability to generalize beyond known 
attack signatures. Moreover, the system maintains 
near real-time latency-on the order of milliseconds 
per interval-rendering it feasible for high-throughput 
security pipelines. 

Looking ahead, several avenues stand out for 
enriching this research. First, integrating advanced 

interpretability techniques (e.g., formal verification 
of latent representations, concept-based 
explanations) could provide deeper assurance to 
analysts and commanders, especially when heavy 
reliance on black-box neural networks raises 
questions of accountability. Second, a multi-agent 

setup might allow autoencoders deployed in 
different network enclaves to share partial 
observations or summarized latent embeddings, 
enhancing collective detection of distributed or 
coordinated intrusions. This decentralized 
intelligence is increasingly relevant for large-scale 
defense infrastructure that spans multiple 
geographical or organizational domains. Third, pilot 

deployments on physical hardware would validate 
how the system handles real-world constraints such 
as variable sensor reliability, partial data corruption, 
and high-speed data ingestion at scales beyond the 
tested environment. Such deployments would yield 
insights into the sim-to-real performance gap, 
informing whether additional domain adaptation or 
calibration routines are necessary for full-scale 
adoption. 

In the broader context of national security and 
mission assurance, these developments pave the way 
for next-generation cyber defenses that adapt in real-
time to adversaries’ evolving tactics. By bridging 
rigorous statistical modeling, deep learning 
architectures, and domain-driven heuristics, the 
framework offers a robust backbone for threat 
detection strategies that transcend static rule sets or 
purely signature-based logic. Our hope is that 
continued refinement-particularly in the areas of 
interpretability, multi-agent coordination, and large-
scale hardware trials-will further solidify the role of 
autonomous machine learning systems as a bulwark 
against emergent cyberattacks. As the capabilities of 
adversaries continue to grow, so too must our 
commitment to evolving the intelligence and 
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reliability of AI-driven cyber defense in mission-
critical settings. 
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