Page 788 - Emerging Trends and Innovations in Web-Based Applications and Technologies
P. 788

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
             study's robust evaluation framework, incorporating multiple   [7]   J. Posetti, A. Matthews, A short guide to the history
             metrics and visualization techniques, provides a thorough   of’fake news’ and disinformation, International Center
             analysis of model performance. These findings suggest that   for Journalists 7 (2018).
             machine  learning  can  be  a  powerful  tool  in  fighting   [8]   E. H. Cline, 1177 BC: The year civilization collapsed,
             misinformation and maintaining the integrity of information   Princeton University Press, 2015.
             online. Overall,  this research offers valuable insights into
             fake news detection, providing a framework that combines   [9]   J.  Neander,  R.  Marlin,  Media  and  propaganda:  The
             high accuracy with real-world applicability and emphasizes   northcliffe press and the corpse factory story of world
             the  importance  of  machine  learning  in  addressing  the   war i, Global Media Journal 3 (2010) 67.
             challenges of misinformation.
                                                               [10]   R.  Herzstein,  The  most  infamous  propaganda
             References                                              campaign in history, GP Putnam & Sons (1978).
             [1]   S.  B.  Parikh,  P.  K.  Atrey,  Media-rich  fake  news   [11]
                  detection:  A  survey,  in:  2018  IEEE  Conference  on   X. Zhang, A. A. Ghorbani, An overview of online fake
                                                                     news:  Characterization,  detection,  and  discussion,
                  Multimedia  Information  Processing  and  Retrieval
                                                                     Information  Processing  &  Management  57  (2020)
                  (MIPR), IEEE, 2018, pp. 436–441.
                                                                     102025.
             [2]   X. Zhou, R. Zafarani, Fake news: A survey of research,   [12]
                  detection  methods,  and  opportunities,  2018.    H. Allcott, M. Gentzkow, Social Media and Fake News
                                                                     in the 2016 Election, Working Paper 23089, National
                  arXiv:1812.00315.
                                                                     Bureau  of  Economic  Research,  2017.  URL:
             [3]   N. K. Conroy, V. L. Rubin, Y. Chen, Automatic deception   http://www.nber.org/papers/w23089.
                  detection: Methods for finding fake news, Proceedings   doi:10.3386/w23089.
                  of  the  Association  for  Information  Science  and   [13]
                  Technology 52 (2015) 1–4.                          S.  Kula,  M.  Choras,  R.  Kozik,  P.  Ksieniewicz,  M.
                                                                     Wo´zniak, Sentiment analysis for fake news detection
             [4]   A.  Zubiaga,  A.  Aker,  K.  Bontcheva,  M.  Liakata,  R.   by  means  of  neural  networks,  in:  International
                  Procter, Detection and resolution of rumours in social   Conference on Computational Science, Springer, 2020,
                  media: A survey, ACM Computing Surveys (CSUR) 51   pp. 653–666.
                  (2018) 1–36.
                                                               [14]   M. de Cock Buning, A multi-dimensional approach to
             [5]   K. Sharma, F. Qian, H. Jiang, N. Ruchansky, M. Zhang, Y.   disinformation: Report of the independent High level
                  Liu, Combating fake news: A survey on identification   Group  on  fake  news  and  online  disinformation,
                  and  mitigation  techniques,  ACM  Transactions  on   Publications Office of the European Union, 2018.
                  Intelligent Systems and Technology (TIST) 10 (2019)   [15]
                  1–42.                                              P. Canada. Parliament. House of Commons. Standing
                                                                     Committee  on  Access  to  Information,  Ethics,  B.
             [6]   S.  Tschiatschek,  A.  Singla,  M.  Gomez  Rodriguez,  A.   Zimmer,  Democracy  under  Threat:  Risks  and
                  Merchant, A. Krause, Fake news detection in social   Solutions  in  the  Era  of  Disinformation  and  Data
                  networks  via  crowd  signals,  in:  Companion     Monopoly:  Report  of  the  Standing  Committee  on
                  Proceedings of the The Web Conference 2018, 2018,   Access to Information, Privacy and Ethics, House of
                  pp. 517–524. doi:10.1145/3184558.3188722.          Commons= Chambre des communes, Canada, 2018.





































             IJTSRD | Special Issue on Emerging Trends and Innovations in Web-Based Applications and Technologies   Page 778
   783   784   785   786   787   788   789   790   791   792   793